
cs206
April 30

Hashing Conclusions
Final Thoughts

CS206

Linear Probing

• Store only <K,V> at each location in
array
• No awkward linked lists

• If key is different and location is in use
then go to next spot in array
• if key is same, replace value
• repeat until free location found

2

CS206 Lec19

Probing Distance

• Given a hash value , linear probing generates

• Primary clustering – the bigger the cluster gets,
the faster it grows

• Quadratic probing –

• Quadratic probing leads to secondary clustering,
more subtle, not as dramatic, but still systematic

• Double hashing
• Use a second hash function to determine jumps

h(𝑥)
h(𝑥), h(𝑥) + 1, h(𝑥) + 2, …

h(𝑥), h(𝑥) + 1, h(𝑥) + 4, h(𝑥) + 9, …

3

CS206 Lec19

Performance Analysis for probing
• In the worst case, searches, insertions and removals

take time
▫ when all the keys collide

• The load factor affects the performance of a hash
table
▫ expected number of probes for an insertion with open

addressing is

• Expected time of all operations is provided is
not close to 1
• NOTE: cheating here O() is about true worst case

𝑂(𝑛)

𝛼

1
1 − 𝛼

𝑂(1) 𝛼

4

CS206 Lec19

Open Addressing vs Chaining

• Probing is significantly faster in practice
• locality of references – much faster to

access a series of elements in an array
than to follow the same number of
pointers in a linked list

• Efficient probing requires soft/lazy
deletions – tombstoning, why?

• de-tombstoning?

5

CS206 Lec15

Performance of Hashtables

6

Hash Expected Hash Worst

search
insert
remove

find min/
max

Unsorted
array

Sorted
 array

Unsorted
list

Sorted
list

Tree
(good)

Hash
Expected

search
insert
remove
find min/
max

CS206

Using Hashtables
• No worries about hashing functions, rehashing, …

• Someone else responsibility

• Example: who is visiting my site, and how often?

• for instance, hackers?

• web servers keep access logs

7

51.68.152.26 - - [31/Mar/2020:07:41:16 -0500] "GET / HTTP/1.1" 200 2372 "-" "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/
75.0.3770.100 Safari/537.36 OPR/62.0.3331.99"

62.210.177.41 - - [31/Mar/2020:08:56:49 -0500] "GET /wp-json/wp/v2/users/ HTTP/1.1" 404 - "-" "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36"

54.36.148.243 - - [31/Mar/2020:13:04:01 -0500] "GET /robots.txt HTTP/1.1" 404 - "-" "Mozilla/5.0 (compatible; AhrefsBot/6.1; +http://ahrefs.com/robot/)"

54.36.148.210 - - [31/Mar/2020:13:04:02 -0500] "GET /moon/14_1.jpg HTTP/1.1" 200 63064 "-" "Mozilla/5.0 (compatible; AhrefsBot/6.1; +http://ahrefs.com/robot/)"

CS206

Parsing a line
• A lot like the zip code task from the

beginning of the semester

8

public class LogLine {
 /** The IP address extracted from the log line */
 private final String ipAddress;
 /** The line itself, stored here in case further processing is needed */
 private final String line;
 /** A counter, not properly a part of the line, but is data associaed with the line */
 private int count;
 public LogLine(String lin) throws Exception {
 if (lin==null || lin.length()==0)
 throw new Exception("Log lines should not be null or empty");
 line = lin;
 count = 1;
 String[] spl = lin.trim().split("\\s+");
 if (spl.length==0)
 throw new Exception("The line could not be split");
 ipAddress = spl[0];
 }

CS206

Read the file and accumulate data

9

public class LogAnalyzer {
 private HashMap<String, LogLine> lineMap;
 public LogAnalyzer() {
 lineMap = new HashMap<>();
 }
 public void readFileAndCount(String fileName) {
 try (BufferedReader br = new BufferedReader(new FileReader(fileName));) {
 String line;
 while ((null != (line=br.readLine()))) {
 LogLine ll = new LogLine(line);
 LogLine oll = lineMap.get(ll.getIP());
 if (oll!=null) {
 oll.incCount();
 } else {
 lineMap.put(ll.getIP(), ll);
 }
 }
 } catch (Exception eee) { // other exception handlers not shown
 System.err.println(eee.toString());
 }
 }

CS206

Print results

10

 public void printIPCount(int minCount) {
 ArrayList<LogLine> vvv = new ArrayList<LogLine>(lineMap.values());
 // if I wanted to sort, I now have the set in an array list,
 // from which sorting is fairly easy.
 int count=0;
 for (LogLine ll : vvv) {
 if (ll.getCount()>minCount) {
 System.out.println(ll.toStringLong());
 count++;
 }
 }
 System.out.println("Number of IPS seen " + lineMap.size());
 System.out.println("Number of IPS seen with count > " + minCount + ": " + count);

 }

CS206

Run

11

 public static void main(String[] args) {
 LogAnalyzer la = new LogAnalyzer();
 la.readFileAndCount("fields43.com-Apr-2020");
 la.printIPCount(30);
 }

77.88.5.51 69
52.36.251.200 62
13.69.29.142 45
104.210.58.78 55
23.237.4.26 160
Number of IPS seen 893
Number of IPS seen with count > 30: 5

CS206

Course Goals (from day 1)

12

1.Become a better computer scientist
2.Learn about common data structures
1. Implementation
2. How and when to use each

3.Understand Object Oriented program
design and its implementation in Java

4.Develop an understanding of UNIX
5.Become a better Java programmer

