
CS206
April 22

Quicker Quicksort
Sorting Stability
Hashing and Maps

CS206

MergeSort & QuickSort

• Inefficient on small lists

• lots of recursive calls (on very small pieces)
eat time

• Idea:

• Rather than make recursive calls down to
size 1 cut off recursion earlier and use
insertion sort

2

CS206

Hybrid MergeSort

3

 private void doMergeSort3i(int lowerIndex, int higherIndex) {

 if (lowerIndex > (higherIndex-12)) {
 iSort.insertionSortIP(array, lowerIndex, higherIndex);
 } else if (lowerIndex < higherIndex) {
 int middle = lowerIndex + (higherIndex - lowerIndex) / 2;
 // Below step sorts the left side of the array
 doMergeSort3i(lowerIndex, middle);
 // Below step sorts the right side of the array
 doMergeSort3i(middle + 1, higherIndex);
 // Now merge both sides
 mergeParts3(lowerIndex, middle, higherIndex);
 }
 }

put insertion sort into the base case and make the base case bigger

Empirically, 10-15
works best

CS206

Hybrid Quicksort

4

 public int[] qs4i(int inputArr[]) {
 doQS4i(inputArr, 0, inputArr.length-1);
 new Insertion().insertionSort2(inputArr);
 return inputArr;
 }

 private void doQS4i(int arr[], int begin, int end)
 {
 if ((end-begin) < 15) {
 // just let it drop
 } else {
 int partitionIndex = partition(arr, begin, end);
 doQS4i(arr, begin, partitionIndex-1);
 doQS4i(arr, partitionIndex+1, end);
 }
 }

For quicksort, it is quicker to cut off early (as with mergesort)

but run insertion sort once on at the end.

Empirically, 10-15
works best

CS206

Stability

• Suppose you have multiple things on
which to sort. Eg spreadsheet columns
• Ties in column B should be sorted by

column A
• Can do this with two sorting passes if

the sort is “stable”.
• Mergesort is stable
• Quicksort is not

5

CS206

The student class

• Comparators for name and age

• Static methods

• Are not always evil

• Are reasonable when the return value of
the method is dependent ONLY on
arguments to the method

• Should be used carefully!!!!!!!!!!
•

switch to VSC for student, mergeOb and qOb

6

CS206 Lec18

Map

• A searchable collection of key-value
pairs

• Multiple entries with the same key are
not allowed

• Also known as dictionary (python),
associative array (perl)

7

CS206 Lec19

Notion of a Map

• Intuitively, a map M supports the
abstraction of using keys as indices with
a syntax such as M[k].

• Simplest setting is a map with items
using keys that are known to be integers
from to , for some .

𝑛

0 𝑁 − 1 𝑁 ≥ 𝑛

8

CS206

Improving Maps

• Can we tradeoff time and space

• UnsortedMap implementation

• efficient spacewise

• not great timewise

• So if storing lots of info but accessing
rarely, OK

• But what if storing less and access often?

• Can we get O(1) time for get/set/remove at
a cost of space?

9

CS206 Lec19

More General Keys

• Earlier: motivated Maps with discussion
of keys as integers. What if our keys are
not integers in range to ?

• Use a function to map keys to integers
into the right range

• Example: Rather than entire
SSN, use only last 4 digits

0 𝑁 − 1

10

∅

∅

0
1
2
3
4 451-229-0004

981-101-0002
025-612-0001

…

CS206 Lec19

Hash Functions and Tables

• A hash function maps a key to integers
in a fixed interval

• is such a function for
integers

• A hash table is an array of size
▫ associated hash function
▫ item is stored at index

h
[0,𝑁 − 1]

h(𝑥) = 𝑥%𝑁

𝑁

h
(𝑘, 𝑣) h(𝑘)

11

CS206

Java Hash classes

• HashMap & Hashtable

• HashMap is quicker (25% in my tests)

• HashMap is NOT thread safe

• takes a key - value pair (a la priority queue)

• applies a hash function to the key and
stores the object

• You do not know the hash function

• O(1) time for store and access

12

CS206

Mini-Homework (part 1)
What is the output of main?

13

 public static void main(String args[])
 {
 HashMap<Integer, Student> hm=new HashMap<>();
 for (Student st : Student.getStudents())
 hm.put(st.getYear(), st);
 for (Map.Entry m:hm.entrySet()) {
 System.out.println(m.getKey()+”--"+m.getValue());
 }
 }

public class Student {
 public static Student[] getStudents()
 {
 Student[] sss = new Student[12];
 sss[0]=new Student("Lisa", 23);
 sss[1]=new Student("Rosie", 22);
 sss[2]=new Student("Charlotte", 22);
 sss[3]=new Student("Synthia", 20);
 sss[4]=new Student("AnnaSophia", 23);
 sss[5]=new Student("Flora", 21);
 sss[6]=new Student("Libby", 21);
 sss[7]=new Student("Rachel", 22);
 sss[8]=new Student("Catherine", 23);
 sss[9]=new Student("Erin", 22);
 sss[10]=new Student("Xinran", 23);
 sss[11]=new Student("Ashley", 23);
 return sss;
 }
}

// Using the same student class as earlier in lecture

Mini Homework (part 2)
insertion sort for quicksort

1,2,3,4,5,6,9,7,8,10,11,14,13,12,15,16,17,18,19,22,20,21,25,24,22,23

For the data above, how many compare and move operations are required to
sort using insertion sort. If the “average” case time for insertion sort is n*n/4 how
much faster is it in this, mostly sorted, case

