
cs206
April 14

Testing
Sorting

Writing Comprehensive Tests

• By Software or Algorithm Analysis

• Examine implementation (algorithm)

• Draw a tree in which every “if” causes a branching

• Yes left; No right

• Consider what the program should do at every leaf

• Figure out a test case to get to every leaf in tree

• Problems with global / method variables

• Work with only public methods

• Handling side-effects (like printing)

• Check what program actually does against what it should do

Writing Comprehensive Tests — Pt 2

• Test -driven design

• Work with abstract description of problem

• Before any implementation write tests with bothin input and output

• Any implementation must pass all tests.

• If pass all tests, the the program does with it is supposed to do.

public void insertAlt(final E element) {
 if (root==null) {
 root=new Node(element);
 size = 1;
 } else
 iInsertAlt(root, element);
 } private void iInsertAlt(final Node treepart, final E toBeAdded) {

 final int cmp = treepart.payload.compareTo(toBeAdded);
 if (cmp==0) return; // the item is in the tree
 if (cmp>0) { // Mar 26 fixed wrong direction on comparison
 if (treepart.left==null) {
 size++;
 treepart.left=new Node(toBeAdded);
 } else {
 iInsertAlt(treepart.left, toBeAdded);
 }
 } else {// cmp>0
 if (treepart.right==null) {
 size++;
 treepart.right=new Node(toBeAdded);
 } else {
 iInsertAlt(treepart.right, toBeAdded);
 }}}

Test Example — Tree Insertion

Testing Conclusions

• From Software / Algorithm Analysis

• If the software itself is flawed, the tests may incorrectly indicate that the program
is correct

• Tests may be closely tied to implementation — so implementation change requires
test change

• From Algorithm Analysis

• Complete algorithm specs are hard to write

Abstract Classes
Halfway between interface and class

public abstract class AbstractPriorityQueue <K extends Comparable<K>, V> {
 enum Ordering { ASCENDING, DESCENDING, MIN, MAX}
 protected Ordering order;
 protected class Entry<L extends Comparable<L>,W> {
 final L theK;
 final W theV;
 public Entry(L kk, W vv) {
 theK = kk;
 theV = vv;
 }
 protected int doCompare(Entry<L,W> e2) {
 switch (order) {
 case MIN:
 case ASCENDING:
 return this.theK.compareTo(e2.theK);
 case MAX:
 case DESCENDING:
 default:
 return e2.theK.compareTo(this.theK);
 }
 }
 public String toString() {
 return "{"+theK+","+theV+"}";
 }
 }
 public abstract int size();
 public abstract boolean isEmpty();
 public abstract boolean offer(K k, V v);
 public abstract V poll();
 public abstract V peek();
}

• Some methods may be defined

• Other methods “abstract”

• Cannot be new’ed

• new AbstractPriorityQueue

• Extend like normal class, but must
implement abstract methods

CS206 Lec16

Priority Queue Sort

• Sorting using a priority queue
1.Insert with a series of insert operations

2.Remove in sorted order with a series of poll
operations

• Efficiency depends on implementation and
runtime of insert and poll

7

CS206 Lec16

Selection Sort

• Selection-sort:
▫ select the min/max and swap with 0

• priority queue is implemented with an
unsorted sequence

• Time:
• Add: O(n)
• Remove: O(n2)

8

CS206 Lec16

Example

9

Phase 1 — Inserting
 (a) 7 (7)
 (b) 4 (7,4)
 ….
 (g) () (7,4,8,2,5,3,9)
Phase 2 — Polling
 (a) (2) (7,4,8,5,3,9)
 (b) (2,3) (7,4,8,5,9)
 (c) (2,3,4) (7,8,5,9)
 (d) (2,3,4,5) (7,8,9)
 (e) (2,3,4,5,7) (8,9)
 (f) (2,3,4,5,7,8) (9)
 (g) (2,3,4,5,7,8,9) ()

CS206 Lec16

Insertion Sort

• Insertion-sort:
▫ insert/swap the element into the correct

sorted position

• Priority queue where the priority queue
is implemented with a sorted sequence

• Time:
• Add:O(n2)
• Remove: O(n)

10

CS206 Lec16

Example

11

Phase 1 — Inserting
 (a) 7 (7)
 (b) 4 (4,7)
 (c) 8 (4,7,8)
 (d) 2 (2,4,7,8)
 (e) 5 (2,4,5,7,8)
 (f) 3 (2,3,4,5,7,8)
 (g) 9 (2,3,4,5,7,8,9)
Phase 2 — polling
 (a) (2) (3,4,5,7,8,9)
 (b) (2,3) (4,5,7,8,9)

 (g) (2,3,4,5,7,8,9) ()

CS206 Lec16

Heap Sort

• Heap-sort:
▫ Insertion — no more than log2(n) steps
▫ Deletion — no more than log2(n) steps

• priority queue is implemented with a heap

• Time:

• Add:O(log2(n))

• Remove: O(log2(n))

12

CS206 Lec16

Example

13

Phase 1 — Inserting
 (a) 7 (7)
 (b) 4 (4,7)
 (c) 8 (4,7,8)
 (d) 2 (2,4,8,7)
 (e) 5 (2,4,8,7,5)
 (f) 3 (2,4,3,7,5,8)
 (g) 9 (2,4,3,7,5,8,9)
Phase 2 — polling
 (a) (2) (3,4,7,5,8,9)
 (b) (2,3) (4,5,7,9,8)

 (g) (2,3,4,5,7,8,9) ()

Mini Homework

14, 6, 18, 2, 13, 7, 8, 9, 3, 17, 5, 10, 11, 12, 15, 19, 16, 0, 1, 4

For the data above, count the number of primitive operations for each of
insertion, selection and heap sorts using the priority queues discussed. A
primitive operation is: comparison, move an item in an array / arraylist. Show
the count.

Also, show the contents of the queue when it contains all of the above items .
Show the array or arraylist.

You may assume that the key and value are identical.

