
Sample Problem: Write code
The Confusion class (below) implements both Comparable and OppComparable. It
is incomplete because it does not implement Comparable. Do something to
complete Confusion.

public interface OppComparable<T> {
 /* Returns a negative integer, zero, or a positive integer
 * as this object is greater than, equal to, or less than
 * the specified object (o)
 */
 public int compareTo(T t);

}

public interface Comparable<T> {
 /* Returns a negative integer, zero, or a positive integer
 * as this object is less than, equal to, or greater than
 * the specified object (o)
 */
 int compareTo(T o)
}

public class Confusion<T> implements Comparable<T>,
OppComparable<T> {

}

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

Sample Problem: Complexity and Data Structures

Fill in every cell of the following table with big O worst case time estimated for
each cell. In the first column, just indicate Y or N. In the final column give the Big
O space usage.

Size
Adjust-
able
Y/N

Read
Time

Replace
Time

Add
time

Remove
Time

Size
Time

Space

Array

ArrayList

Singly
linked list

Doubly
linked list

Stack
Array-
based

Queue
link-list
based

Comment about arrays and space. Suppose I have an array of size 1,000,000 that has 5 items
of data in it. Then the space used is 1000000*M + 5*Z (where M is the space used by an
empty spot the array and Z is the space used by the data item). If I have 10000 items of data
in the same array, then the space used is 1000000*M + 10000*Z. Importantly, the only this that
changes is the multiplier of Z. Hence, the space used by an array is O(N). 

Size
Adjust-
able
Y/N

Read
Time

Replace
Time

Add
time

Remove
Time

Size
Time

Space

Array N 1 1 1 1 1 N (see
comment)

ArrayList Y 1 1 N N 1 N

Singly
linked list

Y 1 (or N if
have to
find first)

1 (or N is
you have
to find first)

1 1 (or N is
you have
to find first)

1 (if list
tracks size,
else N)

N

Doubly
linked list

Y 1 (or N if
have to
find first)

1 (or N is
you have
to find first)

1 1 (or N is
you have
to find first)

1 (if list
tracks size,
else N)

N

Stack
Array-
based

Y but
only up to
the array
size

1 but only
for top
item

N/A 1 1 1 N (see
comment)

Queue
link-list
based

Y 1 but only
for top
item

N/A 1 1 1 (if list
tracks size,
else N)

N

Sample Problem: Linked Lists

The BubbleSwapList class (below) has a private Node class and exactly one
predefined method, public void add(E element). Add a new method,
void bubbleSwap(Node n), to BubbleSwapList that takes one node and swaps
its location in the list with the next node. For example, suppose a list contains

[z w t a f h]
in that order. Calling bubbleSwap with the node containing “a” should change the
list to now be

[z w t f a h]
bubbleSwap must swap the nodes, not just their contents. Note that this is a
different linked list implementation than you may have seen elsewhere and you do
not have access to any methods other than those listed here.

public class BubbleSwapList<E> {

 private class Node<E> {

 public final E element;

 public Node<E> next;

 public Node<E> previous;

 public Node(E element) {

 this.element = element;

 this.next = null; this.previous = null;

 }}

 private Node<E> head;

 public BubbleSwapList() {

 head = null;

 }

 public void add(E element) {

 Node<E> toAdd = new Node<E>(element);

 if (head != null)

 head.previous=toAdd;

 toAdd.next = head;

 head = toAdd;

 }}

Sample Problem: Queues

Write a Java class that implements the QMerge interface given below. The class
should only have the method queueMerge. Also give a Big-O time bound for your
merge algorithm.

The queues both implement the QueueInterface given below (and nothing else).
Elements in the queues all implement the Comparable interface (also given below):

public interface QueueInterface<E> {
 int size(); // the number of items in q
 boolean isEmpty(); // return true iff q is empty
 E first(); // return the first item in q
 void enqueue(E e); // add the item to q
 E dequeue(); // remove from, and return the first item in q
}

public interface Comparable<T> {
 /* Returns a negative integer, zero, or a positive integer
 * as this object is less than, equal to, or greater than
 * the specified object (o)
 */
 int compareTo(T o)
}

public interface QMerge<E> {
 /* takes two sorted queues q1 and q2 containing Objects that
 * implement Comparable. Creates and returns a new queue
 * that is sorted and contains all elements from q1 and
 * q2.
 * @param q1 a sorted queue to be merged
 * @param q2 a sorted queue to be merged
 * @return the merger of the two queues, still sorted. The
 * number of elements in the returned queue should be equal
 * to the sum of the number of elements in q1 and q2
 **/
 public QueueInterface<E> queueMerge(QueueInterface<E> q1,
QueueInterface<E> q2);
}

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

Sample Problem: Analysis and Style
The program below functions correctly. What does it do? Stylistically it is a
disaster. Identify and correct style faults

// Imports not shown (to save space)
public class DoMany {
 private String f;
 public DoMany(String fn)
 {
 f = fn;
 }
 public void Dave() {
 try (BufferedReader br = new BufferedReader(new
FileReader(f))) {
 int hungry = 1;
 String line;
 while (null != (line = br.readLine())) {
 int i = 0;
 try {
 i = Integer.parseInt(line);
 int j = i / hungry;
 System.out.println("Result " + j);
 }
 catch (ArithmeticException dze)
 {
 System.err.println("You divided by zero!!!
");
 }
 catch (NumberFormatException nfe) {
 }
 hungry = i;
 }
 } catch (FileNotFoundException fnf) {
 System.out.println("Could not open ||" + f + "||");
 return;
 } catch (IOException ioe) {
 System.err.println("Could not read ||" + f + "||");
 return;
 }}
 public static void main(String[] args) {
 DoMany mm = new DoMany("data.txt");
 mm.Dave();
 }}

Sample Problem: Class Design

Transportation devices vary according to their mode of travel. There are three
modes: land, sea and air. For each mode there are multiple types: Air has planes
and helicopters; Land has cars and trucks; while water has boats and hovercraft.
Finally, among cars there a special case — the Yugo — which is unable to move.

The class below defines TransportDevice. Write class definitions that build
upon TransportDevice for up to 10 classes to efficiently capture information
above. Following the pattern of TransportDevice any methods you write
should just print a string.

public abstract class TransportDevice {

 public void printType() { System.out.println("XXX"); }

 public void printMode() { System.out.println("All"); }

}

