
CS206 Lec10

CS206

Queues

1

CS206 2

Queues

CS206 3

Agner Krarup Erlang

Queueing Theory

CS206 Lec10

Queues

• Insertions and deletions are First In First Out
– FIFO
• Insert at the back
• Delete from the front

4

CS206 Lec10

Queue Interface

• null is returned
from peek() and
poll() when queue
is empty

• add(),
remove(),
element() are
identical to
offer(),
poll(), peak()
but for throw.

5

public interface QueueIntf<Q> {
 boolean isEmpty();
 int size();
 boolean add(Q q)
 throws IllegalStateException;
 Q remove()
 throws NoSuchElementException;
 Q element()
 throws NoSuchElementException;
 boolean offer(Q q);
 Q poll();
 Q peek();
}

CS206 Lec10

Example

6

Operation output Queue
Contents

offer(5) TRUE {5}
offer(3) TRUE {5,3}

poll() 5 {3}

offer(7) TRUE {3, 7}

poll() 3 {3,7}

peek() 7 {7}

poll() 7 {}

poll() null {}

CS206 Lec10

Array-based Queue

• An array of size n in a circular fashion

• Two ints to track front and size
▫ f: index of the front element

▫ co: number of stored elements

7

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration

CS206 Lec10

Circular Array and Queue

• When the queue has fewer than n
elements, location r =(f+co)%n is the
first empty slot past the rear of the
queue

8

Q
0 1 2 rf

normal configuration

Q
0 1 2 fr

wrapped-around configuration

CS206

Start of Queue Implementation

9

public class ArrayQueue<Q> implements QueueIntf<Q> {
 /** the default capacity for the backing array */
 private static final int CAPACITY = 40;
 /** The array in which the queue data is stored */
 private Q[] backingArray;
 /** The array location of the head of the queue */
 private int count;
 /** The array location of the end of the queue */
 private int frontLoc;
 /**
 * Create an array backed queue with the default capacity. */
 public ArrayQueue() {
 this(CAPACITY);
 }
 /**
 * Create an array backed queue with the given capacity
 * @param qSize the capacity for the queue */
 public ArrayQueue(int qSize) {
 count = 0;
 frontLoc = 0;
 backingArray = (Q[]) new Object[qSize];
 }

CS206 Lec10

offer(), add()

• must handle case if the array becomes
full
▫ Limitation of the array-based implementation
▫ offer returns false
▫ add throws exception

10

CS206 Lec10

Performance and Limitations
for array-based Queue

• Performance
▫ let be the number of objects in the queue
▫ The space used is
▫ Each operation runs in time

• Limitations
▫ Max size is limited and can not be changed
▫ Pushing onto a full stack queue in an

exception

𝑛
𝑂(𝑛)

𝑂(1)

11

CS206

Simulating a Bank

12

