Sorted Linked Lists

```java
public class SortedDLL<T extends Comparable<T>> extends DoubleLinkedList<T> {

    @Override
    public void addLast(T t) {
    }

    @Override
    public void addFirst(T t) {
    }

    @SuppressWarnings("unchecked")
    public void addSorted(Comparable<T> t) {
        // lots of thought here
    }
}
```
Running Time

• The run time of a program depends on
 ▫ efficiency of the algorithm/implementation
 ▫ size of input
 ▫ what else?

• The running time typically grows with input size

• How do you measure running time?
 • CPU usage?
 • Reliability?
public class Timer {
 private static final int REPS = 10; // number of trials
 private static final int NANOS_SEC = 1000000000; // nanosec per sec

 public double doSomething(int[] data) {
 double k = 0;
 for (long i = 0; i < data.length; i++) {
 for (long j = 0; j < data.length; j++) {
 k += Math.sqrt(i * j);
 }
 }
 return k;
 }

 public static void main(String[] args) {
 Timer timer = new Timer();
 long data[] = new long[REPS];
 for (int j = 1000; j < 10001; j = j + 1000) {
 for (int i = 0; i < REPS; i++) {
 long start = System.nanoTime();
 timer.doSomething(new int[j]);
 long finish = System.nanoTime();
 data[i] = (finish - start) / NANOS_SEC;
 System.out.println(String.format("%d %.4f", j, (double) (finish - start) / NANOS_SEC));
 }
 }
 }
}
Experimental Studies

• Write a program implementing the algorithm
• Run it with different input sizes and compositions
• Record times and plot results
Limitation of Experiments

- You have to implement the algorithm
- You have to generate inputs that represent all cases
- Comparing two algorithms requires exact same hardware and software environments
 - Even then timing is hard
 - multiprocessing
 - file i/o
Theoretical Analysis

- Use a high-level description of algorithm
 - pseudo-code
- Running time as a function input size, n
- Ignore other details of the input
- Independent of the hardware/software environment
Primitive Operations

• Basic computations
 • * / + -

• Comparisons
 • ==, >, <

• Setting
 • x=y

• Assumed to take constant time
 - exact constant is not important
 - Because constant is not important, can do more than just this list
Example
Time required to compute an average

```java
public double calcA(long[] data)
{
    double res = 0;
    for (int i=0; i<data.length; i++)
    {
        res = res+data[i];
    }
    return res/data.length;
}

public static calcB(long[] data) {
    double res = 0;
    long pd = 0;
    for (int i=0; i<data.length; i++) {
        long datum=data[i];
        if (pd<datum) {
            res = res+datum;
        }
        pd=datum;
    }
    return res/data.length;
}
```

How many operations? (In terms of the length of data)
Estimate Running Time

- \(\text{calcB} \) executes a total of \(7N+1 \) primitive operations in the worst case, \(5N+1 \) in the best case.

- Let \(a \) be the fastest primitive operation time, \(b \) be the slowest primitive operation time.

- Let \(T(n) \) denote the worst-case time of \(\text{calcB} \). Then \(a(5n + 1) \leq T(n) \leq b(7n + 1) \)

- \(T(n) \) is bounded by two functions
 - both are linear in terms of \(n \)
Growth Rate of Running Time

• Changing the hardware/ software environment
 □ Affects $T(n)$ by a constant factor, but
 □ Does not alter the growth rate of $T(n)$

• The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm calcB (and calcA)
Comparison of Two Algorithms

- insertion sort: $n^2/4$
- merge sort: $2n \ln n$
- suppose $n=10^8$
 - insertion sort: $10^8*10^8/4 = 2.5*10^{15}$
 - merge sort: $10^8*26*2 = 5.2*10^9$
 - or merge sort can be expected to be about 10^6 times faster
 - so if merge sort takes 10 seconds then insertion sort takes about 100 days
Asymptotic Notation

• Provides a way to simplify analysis
• Allows us to ignore less important elements
 □ constant factors
• Focus on the largest growth of n
 • Focus on the dominant term
How do these functions grow?

- \(f_1(x) = 43n^2 \log^4 n + 12n^3 \log n + 52n \log n \)
- \(f_2(x) = 15n^2 + 7n \log^3 n \)
- \(f_3(x) = 3n + 4 \log_5 n + 91n^2 \)
- \(f_4(x) = 13 \cdot 3^{2n+9} + 4n^9 \)
Big Θ

- Constant factors are ignored
- Upper bound on time
- Goal is to have an easily understood summary of algorithm speed
 - not implementation speed
Sublinear Algorithms

- O(1)
 - runtime does not depend on input

- O(lg_2 n)
 - algorithm constantly halves input
Linear Time Algorithms: $O(n)$

- The algorithm’s running time is at most a constant factor times the input size
- Process the input in a single pass spending constant time on each item
 - max, min, sum, average, linear search
- Any single loop
\(O(n \log n) \) time

Frequent running time in cases when algorithms involve:

- Sorting
 - only the “good” algorithms
 - e.g. quicksort, merge sort, ...
Quadratic Time: $O(n^2)$

- Nested loops, double loops
 - The `doSomething` algorithm
- Processing all pairs of elements
- The less-good sorting algorithms
 - e.g., insertion sort
Slow Times

- polynomial time: \(O(n^k) \)
 - All subsets of \(n \) elements of size \(k \)

- exponential time: \(O(2^n) \)
 - All subsets of \(n \) elements (power set)

- factorial time: \(O(n!) \)
 - All permutations of \(n \) elements
Timing
Writing code that runs in $O(x)$ time

```java
public interface SpeedyAlgorithms {
    void orderOne(int[] data);
    void orderLogN(int[] data);
    void orderN(int[] data);
    void orderNSquared(int[] data);
    void orderNCubed(int[] data);
    void orderNFactorial(int[] data);
}
```