
CS206 Lec02

CS206

I/O Methods
Files/Exceptions

Inheritance

1

CS206

Quizlet
• What is a “Data Structure”

• @4 reasonable answers
• favorite answer: 1. Something about data 2. I know nothing more 3.

No. 1 May be wrong.
• Correct Answer: A way of organizing data. The simplest data structure

is an array. Others we will study: ArrayList, LinkedList, Trees …
• UNIX: Hello.java in /home/YOU/cs206. Get there, compile, run.

• 3 reasonable answers
• Favorite Answer: “Get me home Siri”; please compile…please? Gooo!

• second favorite: drawing of a dinosaur (Barney?)
• Correct Answer:

• cd /home/YOU/cs206
javac Hello.java
java Hello

2

CS206

Quizlet (part 2)
• Write a complete program that prints “Hello World” 1000 times

• Almost everyone did something useful
• Answer:

public class HelloWorld {
 public static void main(String[] args) {

 for (int i=0; i<1000; i++) {
 System.out.println("Hello World");
 }}}

• What is overloading of methods?
• 3-4 reasonable answers
• Favorite answer: Its when methods try to list too much at the gym.
• Answer:
Overloading is using the same method name and return
value with different sets of arguments.
public class Counter {

 public int timeser() {
 return 0;
 }
 public int timeser(int param) {
 return param*param;
 }}

3

CS206

Start of the Java class hierarchy

4
http://web.deu.edu.tr/doc/oreily/java/langref/ch10_js.htm

http://web.deu.edu.tr/doc/oreily/java/langref/ch10_js.htm

CS206

Java Object Methods

• public boolean
equals(Object ob)

• public String
toString()

• public Class
getClass()

5

• protected Object
clone()

• protected void finalize()
• public int hashCode()
• public void notify()
• public void notifyAll()
• public void wait()
• public void wait(long l)
• public void wait(long l,

int ii)

CS206

Casting, Classes and Inheritance
• Suppose: SPCA shelter

for only dogs and cats
• Desire: A program that

tracks all animals at
shelter

• Approach
• Create 3 classes,

Dog and Cat that
extend (inherit from)
from Animal.

• Use single array to
hold all animals

• But deal with dogs
cats separately later

6

public class Animal {}

public class Dog extends Animal {}

public class Cat extends Animal {}

public class Shelter {
 Animal[] animals = new Animal[100];
 int animalCount=0;
 public void addAnimal(Animal animal) {
 animals[animalCount++]=animal;
 }
 public Animal getAnimal(int location) {
 return animals[location];
 }
 public static void main(String[] args) {
 Shelter shelter = new Shelter();
 shelter.addAnimal(new Dog());
 shelter.addAnimal(new Cat());
 Cat c = (Cat)shelter.getAnimal(1);
 System.out.println(c);
 }}

CS206 Lec02

Strings

• Strings - "a", “abc" — double quotes
• Characters - ‘a' — single quotes
• Declaring String objects

String name;

String name = new String();

• Declaring String objects with initialization
String name = "Fred";

String name = new String(“Fred");

There are subtle differences between these two
declarations.

7

CS206

Strings, example

8

/***********************
 * @author gtowell
 * Purpose:
 * String sample
 * Created: August 28, 2019
 * Modified: August 29, 2019
 * January 9, 2020
***********************/
public class Stringer {
 public static void main(String[] args) {
 String geoffrey = "Geoffrey";
 String geoffrey2 = new String("Geoffrey");
 System.out.println(geoffrey);
 String geoff = geoffrey.substring(0, 5);
 System.out.println(geoff);
 String c = geoffrey.concat(geoff);
 String d = geoffrey + geoff; // + on strings does concatenation
 System.out.println("|" + geoffrey + "|" + geoff + "|" + c + "|");
 System.out.println("|" + geoffrey + "|" + geoff + "|" + d + "|");
 if (geoffrey == geoffrey2) {
 System.out.println("Same object |" + geoffrey + "||" + geoffrey2 + "|");
 }
 if (geoffrey.equals(geoffrey2)) {
 System.out.println("Same String ||" + geoffrey + "||" + geoffrey2 + "|");
 }}}

CS206 Lec02

Reading the keyboard
• System.in is, by default, set to receive keyboard input
• Use this pattern to read from keyboard
• the code on this slide will not compile/run

9

public class Student {
 String name;
 int age;

 public Student(String n, int a) {
 name = n;
 age = a;
 }

 public String toString() {
 StringBuilder sb =
 new StringBuilder("Details..............");
 sb.append("\nName: “).append(this.name);
 sb.append(“\nAge: ").append(age);
 return sb.toString();
 }

 public static void main(String[] args) {
 BufferedReader br = new BufferedReader(

 new InputStreamReader(System.in));
 String name;
 int age;
 System.out.print("Enter student name: ");
 name = br.readLine().trim();
 System.out.print("Enter Age: ");
 age = Integer.parseInt(br.readLine());
 Student student = new Student(name, age);
 System.out.println("\n" + student.toString());
 }
}

CS206 Lec02

Exceptions
• Unexpected events during execution

▫ unavailable resource
▫ unexpected input
▫ logical error

• In Java, exceptions are objects
• 2 options with an Exception

• “Throw” it
• this says that the exception must be handled

elsewhere
• “Catch” it.

• handle the problem here and now

10

CS206 Lec02

Catching Exceptions

• Exception handling
• try-catch

• An exception is
caught by having
control transfer to
the matching catch block

• If no exception occurs, all catch blocks
are ignored

11

CS206 Lec02

Throwing Exceptions

• An exception is thrown
▫ implicitly by the JVM because of errors
▫ explicitly by code

• Exceptions are objects
▫ throw an existing/predefined one
▫ make a new one

• Method signature – throws
public static int parseInt(String s)
throws NumberFormatException

12

CS206 Lec02

Java’s Exception Hierarchy

13

CS206

Handling Exceptions
try-catch

14

public static void main(String[] args) {
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 String name;
 int age;
 try {
 System.out.print("Enter student name: ");
 name = br.readLine().trim();
 } catch (IOException e) {
 System.err.println("problem " + e);
 return;
 }
 try {
 System.out.print("Enter Age: ");
 age = Integer.parseInt(br.readLine());
 } catch (IOException e) {
 System.err.println("problem " + e);
 return;
 } catch (NumberFormatException e) {
 System.err.println("problem " + e);
 return;
 }
 Student student = new Student(name, age);
 System.out.println("\n" + student.toString());
 }

Exceptions should be
handled as soon as
possible.

try-catch should
enclose as little
code as possible

CS206

Handling Exceptions
throws

15

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;

public class NameAndAge {
 private String name;
 private int age;
 public void getNameAndAge(InputStream inStream) throws IOException, NumberFormatException {
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
 System.out.print("Enter student name: ");
 name = br.readLine().trim();
 System.out.print("Enter Age: ");
 age = Integer.parseInt(br.readLine());
 }
 public static void main(String[] args) {
 try {
 NameAndAge nameAndAge = new NameAndAge();
 nameAndAge.getNameAndAge(System.in);
 System.out.println("\n" + nameAndAge);
 } catch (IOException ioe) {
 System.err.println("problem " + ioe);
 } catch (NumberFormatException nfe) {
 System.err.println("problem " + nfe);
 }}}

Every throw must
be caught

Sometimes it is better to handle exceptions elsewhere ..

Never throw
from main

CS206

try/catch — with resources

16

 public void readOneLineTC(String filename)
 {
 BufferedReader br;
 try {
 br = new BufferedReader(
 new FileReader(filename));
 br.readLine();
 } catch (FileNotFoundException fnf) {
 System.err.println(“No file " + e);
 } catch (IOException e) {
 System.err.println("Reading " + e);
 } finally {
 if (br!=null) {
 try {
 br.close();
 } catch (IOException ioe) {
 System.err.println("Close" + ioe);
 }
 }
 }
 }

public void readOneLineTCR(String filename)
 {
 try (BufferedReader br = new BufferedReader(
 new FileReader(filename));) {
 br.readLine();
 // close unnecessary in this formulation
 } catch (FileNotFoundException e) {
 System.err.println(“Open " + e);
 } catch (IOException e) {
 System.err.println("Reading " + e);
 }
 }

finally == code that WILL be
executed

Close can throw an exception
so it too must be caught

if time, write program to demo try/catch/fianlly

CS206 Lec02

Software Design Goals
• Robustness

▫ software capable of error handling and recovery
▫ programs should never crash

▫ ending abruptly is not crashing

• Adaptability
▫ software able to evolve over time and changing conditions

(without huge rewrites)

• Reusability
▫ same code is usable as component of different systems in

various applications
▫ The story of Mel — https://www.cs.utah.edu/~elb/folklore/mel.html

17

https://www.cs.utah.edu/~elb/folklore/mel.html

CS206 Lec02

OOP Design Principles
• Modularity

• programs should be composed of “modules” each of which do their own
thing

• each module is separately testable
• Large programs are built by assembling modules
• Objects (Classes) are modules

• Abstraction
• Get to the core — non-removable essence of a thing
• Most pencils are yellow, but yellowness does not required

• Encapsulation
• Nothing outside a class should know about how the class works.

• For instance, does the Object class have any instance variables.
(Of what type?)

• Allows programmer to totally change internals without external effect

18

CS206 Lec02

OOP Design

• Responsibilities/Independence: divide
the work into different classes, each
with a different responsibility and are as
independent as possible

• Behaviors: define the behaviors for each
class carefully and precisely, so that the
consequences of each action performed
by a class will be well understood by
other classes that interact with it.

19

CS206 Lec02

Class Definition

• Primary means for abstraction in OOP
• Class determines
▫ the way state information is stored – via

instance variables
▫ a set of behaviors – via methods

• Classes encapsulate
▫ private instance variables

▫ public accessor methods (getters)

20

CS206 Lec02

toString

• Special method in a class that provides a
way to customize printing objects

• returns a String representation of the
instance object that can be used by

• public String toString()

21

CS206

Student (again)

22

show in VS Code

CS206 Lec02

Constructors
• Constructors are never inherited
• A class may invoke the constructor of the class it extends

via a call to super with the appropriate parameters

• e.g. super()

• super must be in the first line of constructor

• If no explicit call to super, then an implicit call to the
zero-parameter super will be made

• A class make invoke other constructors of their own class
using this()

• this must be first

• Cannot explicitly use both super and this

23

