
Problem 1:

Consider the following definition of a node for a tree in which each node can have an arbitrary
number of children.

public class Q1Node<R> {
 final R payload;
 // Pointer to the head of a linked list of child nodes
 // This link goes down the tree
 // So if the current node is at depth N, then
 // firstChild is at depth N+1
 Q1Node<R> firstChild;
 // Pointer (in a single linked list style) to a sibling node
 // If the current node is at depth N then nextChild is also
 // at depth N
 Q1Node<R> nextChild;
 public Q1Node(R pload) {
 payload=pload;
 firstChild=null;
 }
 public void addChild(Q1Node n) {
 n.nextChild = firstChild;
 firstChild = n;
 }
}
Write a method that returns the total number of nodes in such a tree .

Problem 2:

Suppose you have an array-based binary heap with data already in an array as follows: (Array
locations are in the first row, data items are in the second row:

Show the array after each of the following heap operations:
 poll()
 poll()
 insert(22)
 remove(15)
 remove(16)
 poll()

Loc 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value 19 13 18 11 12 17 15 10 9 2 3 8 16 14 4 6 7 0 5 1

Question 3: Sorting

Sometimes mergesort is faster than quicksort. Construct a list of length at least 10 on which
mergesort is significantly faster than quicksort. Show the entire mergesort and quicksort
process on your list and give a primitive operations count for each algorithm.

Question 4:

Consider the following method:

 public int mystery(int[] arr) {
 return mystery(arr, 0, arr.length-1);
 }
 private int mystery(int arr[], int begin, int end)
 {
 int c = arr.length * 0.5;
 if (begin < end) {
 int partitionIndex = partition(arr, begin, end);
 if (partitionIndex == c)
 return arr[c];
 if (partitionIndex > c)
 mystery(arr, begin, partitionIndex-1);
 else
 mystery(arr, partitionIndex+1, end);
 }
 return arr[c];
 }

In the above, partition() is the partition method of quicksort. It does not appear here.

What does the mystery method return when given an array of integers? What is the worst case
and expected case runtime of this method? Explain/justify each of your answers. (Examples
will aid your explanations.)

Question 5:

public class LinkedBinaryTree<E extends Comparable<E>> {
 protected class Node
 {
 E payload;
 Node right;
 Node left;
 public Node(E e)
 {
 payload=e;
 right=null;
 left=null;
 }
 public String toString()
 {
 return payload.toString();
 }
 /** The root of the tree */
 protected Node root;

 // Other stuff as needed

 }

Given the tree and Node definition above, write a method returns the depth of the lowest node
that has 2 children.

Question 6:

Fill in the following table with big-O time estimates. For “find min/max” give the time to find
the maximum or minimum value in the data structure.

In the table below give the expected worst case for a hashtable with the given load factor (α).

Hashtable
load factor < 0.5

Hashtable
load factor > 0.9

search

insert

remove

find min/max

Unsorted
array

Sorted
 array

Unsorted
list

Sorted
list

Complete
Tree

Tree

search

insert

remove

find min/max

Question 7. Hashing

Suppose that there exists a method valueOf() that returns 1-10 for the characters A-J. Here is
its signature:

 int valueOf(char c)

So, valueOf(‘A’) is 1, valueOf(‘B’) is 2, etc.

Further suppose the polynomial accumulator function below for strings of length 3 or less that
contain only A-J. 	

	 p(str) = valueOf(str.charAt(0)) + valueOf(str.charAt(1))*z + valueOf(str.charAt(2))*z*z

charAt(x) returns the characters at the given location in a string. So “ABC”.charAt(1) return ‘B’.

Finally suppose that the in polynomial accumulator z=3. Hence

p(“ADB”) = 1 + 4*3 + 2*3*3 = 31

Now, suppose that

	 h(x) = x%11

 h2(x) = (x%7)+3

where h(x) is the hashing function and h2(x) is the function used for double hashing. x is the
number calculated by the polynomial accumulator.

Finally, the method put(String key, Integer value) inserts the key-value pair into the hashtable.

You have 3 hashtables of size 11 that respectively use linear probing, quadratic probing and
double hashing. Show the contents of each hashtable after completing the following
operations (you need only show the final contents)

put(“ABC”,1)

put(“ABD”,2)

put(“EFG”,3)

put(“EEE”,4)

put(“EFF”,5)

put(“GFG”.6)

put(”JFG”,7)

put(“EFF”, 8)

