
CS206 Introduction to Data Structures

Lab 4

Command Line Arguments, Interfaces, and Exceptions

Thursday, Feb 13

More about directories: ls and cd are really useful. There are
some things that make them more so.

Exercise 1: Fill in the table below:
In the result column, describe what you would see, not
specifics. For instance, “I would see the contents of my home
directory”. Assume that in the cs206 directory exists and there
are at least two subdirectories, Lab1 and Lab2 of cs206.

~ denotes your home directory. “ls ~” always gives a listing
of the contents of your home
directory
“cd ~” will take you to your
home directory

.. indicates the directory one
up from your current
directory

“ls ..” lists the contents of
the directory one up from
where you are
“cd ../aa” move up one
directory and then down into
the directory aa.

. represents the current
directory

“ls .” is exactly the same
as “ls”.

“cp ../../A.java .”
copy into the current
directory the file A.java
from a directory two up

 1

Exercise 2. Command Line Arguments and importing classes
This exercise very briefly introduces the topic of providing
information to your program from the command line.
1. Create a new folder in Visual Studio Code — call it Lab4
2. Import the class Main.java from the file
/home/gtowell/Public206/lab04/Main.java
into the project by doing the following:

1.Open a terminal window
2. cd to the Lab4 directory you just created. Assuming you

followed class conventions and the directions above
execute

3.cd /home/YOU/206/Lab4
4. Copy the file
5.cp /home/gtowell/Public206/data/lab04/
Main.java .
(Note the use of the “.”; it is as described above!)

3. The file Main.java should appear in Visual Studio Code
4. Run the newly imported class from within VSC. What is the

output?
5. Go back to the terminal window opened in step 2.
6. Run your program from the command line as follows:
javac Main.java
java Main

7. Run your program again but this time
 java Main a s d f g

8. What is the difference? Why?

Current location Command result

/home/YOU/cs206/Lab1 ls ..

/home/YOU/cs206/Lab1 ls ~/Lab1

/home/YOU/cs206/Lab1 ls ../..

/home/YOU/cs206/Lab2 ls ~/../YOU

/home/YOU/cs206/Lab1 cd ./..

 2

9. Run you program one more time (replace YOU with your UNIX
login name):
 java Main /home/YOU/*

10.Compare your output to the following unix command which
lists every file in a directory

11. ls /home/YOU
12. Are the lists of files the same? Explain?

Exercise 3: Circular Linked Lists
In this exercise you will import several classes that implement a
CircularLinkedList.
A circular linked list is like a singly liked list except that it is a
circle rather than a line. Hence, there is no well defined
starting point (head) or ending point (tail). Rather every node is
linked to the another node. Follow the circle long enough and
you get back to where you started.

After importing, you will fully implement the size method that
exists only as stub in the provided class. Note that this
implementation does not have a size variable. (Do not add it.)
Hence, the number of items in the list must be computed
whenever the size method is called.

Here is the stub definition of size.
 /****
 * @return the number of items in the list
 ****/
 @Override
 public int size()
 {
 return -1;
 }

 3

Classes for this exercise are in
/home/gtowell/Public206/data/Lab04/.
Into your Lab4 folder import: Rabbit.java,
CircularLinkedList.java, LinkedListInterface.java and
CLLMain.java using the procedure above. Note that in
CircularLinkedList.java, the size method appears exactly as
above.

After importing, implement the size function.

Finally, extend the main method of CLLMain.java to test your
size.

When you have completed these tasks put your name on a page
along this the total number of lines of code you added to
CircularLikedList.java. If you did not compete these tasks, give
a brief summary of how far along you got.

 4

