
CS106/206 Assignment HC6/BMC7 Style
Grading Rubrics
General
6 points are allocated to fairly mechanical rules on naming/comments/indentation - these should
be easy to check off. Another 19 points are allocated to more creative practices, as explained
below. Consult the formatting guide for details to check for under each category

Print student programs from Emacs, via “postscript print buffer” menu option.

Total: 25 points

Code formatting (6 points total)

1. Naming Conventions: 2 points
a. if any of the rules are violated

2. Whitespace: 1 point
a. inconsistent spacing (excessively) - - if just one place, point it out but don’t take

off
3. Comments: 2 points

a. File header missing or malformatted
b. Uncommented instance variables - no comment is okay if well-named
c. Uncommented methods (getters and setters can have no comments, when

appropriately named)
d. Method comments that do not conform to javadoc style
e. Uncommented complex blocks of code
f. Unhelpful comments

4. Indentation: 1 point
a. inconsistent indentation (excessively) - if just one single line, point it out but don’t

take off

Design principles (19 points total)

Assignment 7 (binaryheap)

1. private Instance variables and getters 1 point
a. Any non-private instance variables, including missing modifier

2. Use public/private static final constants instead of integer/double/String
literals - any literal that has reason to be changed later should be a constant 1 point

a. Using [0] , [1] , [2] … directly in code after calling split (does not apply to
Haverford, which uses CSVReader)

3. Constructor must initialize all instance variables 1 point
4. ArrayBinaryTree (5 points)

a. Node class is not required, but if they use one, it should be private and nested
b. Any method that takes an array index parameter shouldn’t be public
c. remove handles null by swapping with last element

d. toString*Order and toString implemented
5. ArrayHeap (9 points+EC)

a. insert and remove overridden with appropriate upheap and downheap
operations

b. insert and remove do comparisons via .compareTo for keeping heap order
based on the keys (polling percentages)

c. Object equality should be determined by .equals or compareTo==0 based on
last names

d. toStringBreadthFirstOrder implemented
e. peekTopN implemented and analysis in README is correct. Points are mostly

for the analysis, as correctness checks functionality 4pts
Easiest just to copy into a second array and call Collections.sort on it. This is
O(nlogn).
If they manage anything better, which means they are able to separate the
number of top items requested (k) and the total number of elements (n), give
extra credit. This typically requires a partial sort or a second heap.

i. +1 O(1) if , just look in [0], [1], [2]k ≤ 2
ii. +1 O(n+klogn) if copying into a second heap of size n and just poll first k
iii. +3 O(n+klogk) if copying into a second array and partial-sort the first k

largest elements with quicksort. Only +1 if using sort to partial sort, i.e.n2
selection

iv. +5 O(klogk) if using a second heap in the following manner:
insert root of heap1 into heap2
repeat k times:

poll heap2 and insert its two children (from heap1) into heap2
6. Custom class say Candidate for polling data (2 points)

a. Implements Comparable<Candidate>
i. if implements Comparable and compareTo casts Object to

Candidate instead, don’t take off but write comment that
Comparable<Candidate> is better

b. .equals overridden OR compareTo == 0 is used to check equality
c. toString overridden appropriately

Deductions:

7. Additional unnecessary data structures (take off 3-5 points depending on how bad it is)
8. More loops/calls than necessary - for example if remove calls contains to see if an

item is in the tree, and then calls containsIndex to retrieve its index. -1 each

