
CS106/206 Assignment HC5/BMC6 Style
Grading Rubrics
General
7 points are allocated to fairly mechanical rules on naming/comments/indentation - these should
be easy to check off. Another ​18​ points are allocated to more creative practices, as explained
below. Consult the formatting guide for details to check for under each category

Print student programs from Emacs, via “postscript print buffer” menu option.

Total: 25 points

Code formatting (​7 points total​)

1. Naming Conventions: ​2 points
a. if any of the rules are violated

2. Whitespace: ​1 point
a. inconsistent spacing (excessively) - - if just one place, point it out but don’t take

off
3. Comments: ​3 points

a. File header missing or malformatted
b. Uncommented instance variables - no comment is okay if well-named
c. Uncommented methods (getters and setters can have no comments, when

appropriately named)
d. Method comments that do not conform to javadoc style
e. Uncommented complex blocks of code
f. Unhelpful comments

4. Indentation: ​1 point
a. inconsistent indentation (excessively) - if just one single line, point it out but don’t

take off

Design principles (​18 points total​)
The exact point allocations will change from assignment to assignment. In general, because it is
impossible for me to imagine all the ways thing can go wrong, grade somewhat holistically
instead of sticking to the rubric strictly.

Assignment 5/6 (binary tree)

1. private Instance variables and getters ​1 point
a. Any non-private instance variables, including missing modifier

2. Use ​public/private static final​ constants instead of integer/double/String
literals - any literal that has reason to be changed later should be a constant ​1 point

a. Using ​[0] ​, ​[1] ​, ​[2] … ​ directly in code after calling ​split ​ (does not apply to
Haverford, which uses ​CSVReader ​)

3. Constructor must initialize all instance variables ​1 point
4. LinkedBinaryTree (​12 points​) (note that remove is extra credit for HC)

a. private nested ​Node​ class
b. insert ​, ​contain ​, ​remove ​, ​toString*Order​ implemented recursively. If not,

-3 each to a max penalty of -10
c. insert​, ​contain ​ and ​remove ​ does comparisons via ​.compareTo
d. toString​ overridden appropriately
e. No additional data structures (take off 3-5 points depending on how bad it is)

5. Custom class say ​Candidate ​ for polling data (​3 points​)
a. Implements ​Comparable<Candidate>

i. if implements ​Comparable ​ and ​compareTo​ casts ​Object ​to
Candidate ​ instead, don’t take off but write comment that
Comparable<Candidate> ​ is better

b. toString ​ overridden appropriately

