
CS106/206 Assignment 3 Style Grading 
Rubrics 
General 
6 points are allocated to fairly mechanical rules on naming/comments/indentation - these should 
be easy to check off. Another 19 points are allocated to more creative practices, as explained 
below. Consult the formatting guide for details to check for under each category 
 
Print student programs from Emacs, via “postscript print buffer” menu option.  
 
Code formatting (6 points total) 

1. Naming Conventions: 2 points 
a. if any of the rules are violated 

2. Whitespace: 1 point  
a. inconsistent spacing (excessively) - - if just one place, point it out but don’t take 

off 
3. Comments: 2 points  

a. File header missing or malformatted 
b. Uncommented instance variables 
c. Uncommented methods (getters and setters can have no comments, when 

appropriately named) 
d. Method comments that do not conform to javadoc style 
e. Uncommented complex blocks of code  
f. Unhelpful comments  

4. Indentation: 1 point 
a. inconsistent indentation (excessively) - if just one single line, point it out but don’t 

take off 
 
Design principles (19 points total)  
Note that student README provides a discussion on how their design works. If the README 
doesn’t have the required discussion, take 5 points off. 
 
Assignment 3 (Linked list) 

1. private Instance variables and getters 1 point 
a. Any non-private instance variables, including missing modifier  

2. Use public static final constants instead of integer/double/String literals - any 
literal that has reason to be changed later should be a constant 1 point 

a. Likely cases 
i. Using “-f”, “-m”  directly in code 
ii. Using [0] , [1] , [2] …  directly in code after calling split on an input 

line 
iii. Character positions to use with substring to parse the year from filename 

3. Constructor must initialize all instance variables 1 point 
4. Reasonable designs for Name 4 points 

 



a. String instance variable for the actual name (probably not worth a point) 
b. An ArrayList or array for the yearly stats - an array is acceptable if they computed 

the size of the array from the number of files given in args. 
c. There should be a custom class that holds the three yearly statistics: the year, 

the rank and the number. No total here. 
d. Total number of babies with this name (int or double) - double is acceptable 

because then they won’t have to cast to compute the percentages 
e. Percentages should be computed on the fly when reporting and not stored. Going 

back to compute all the percentages after file reading is done is a waste of loops 
5. Storage for totals for percentage calculation 2 point 

a. Yearly totals as an array or arrayList - again, array is acceptable if they computed 
the size - this list of totals should not be part of the Name  class, but as additional 
data structures in Main  or another auxiliary class. Type can be just int or an 
object that stores a year and the yearly total  

b. Grand totals as two integers/doubles or an array of two integers/doubles 
6. No additional/redundant structures 3 points 

a. Only two top-level linked lists of Name, two arraylists/arrays of yearly totals and 
two instance variables for the grand totals (as specified in 4 and 5) 

b. Take off more than 3 points if they really abuse unnecessary data structures:  
i. copying things in an array just so that they can use Array.sort 
ii. using a dictionary/map/hashmap for any reason 
iii. anything else I can’t imagine  

7. Redundant looping/methods 7 points 
a.  Each file is read once and only once 
b. insertBefore has no loop 
c. insertSorted  only one O(n) loop 
d. findName  only one O(n) loop 
e. For each name in each file, either it exists (via call to findName ) already in the 

list, and an updater is called (no loop in the updater), or it doesn’t and 
insertSorted  is called 

f. Each total (includes all yearly totals and grand total) is computed once and 
stored.  

g. The yearly totals should be computed WHILE each file is being read with no 
additional loops (within the Scanner loops) 

h. The grand totals should also be computed WHILE the files are being read and 
finished as soon as the last file is read  

i. Total rank should be computed via an O(n) method per name, by searching 
through the linked list and counting all the names with a greater total 

 


