
CS206 Assignment 5 Style Grading
Rubrics
General
5 points are allocated to fairly mechanical rules on naming/comments/indentation - these should
be easy to check off. Another 20 points are allocated to more creative practices, as explained
below. Consult the formatting guide for details to check for under each category

Print student programs from Emacs, via “postscript print buffer” menu option.

Code formatting (5 points total)

1. Naming Conventions: 1 points
a. if any of the rules are violated

2. Whitespace: 1 point
a. inconsistent spacing (excessively) - - if just one place, point it out but don’t take

off
3. Comments: 2 points

a. File header missing or malformatted
b. Uncommented instance variables
c. Uncommented methods (getters and setters can have no comments, when

appropriately named)
d. Method comments that do not conform to javadoc style
e. Uncommented complex blocks of code
f. Unhelpful comments

4. Indentation: 1 point
a. inconsistent indentation (excessively) - if just one single line, point it out but don’t

take off

Design principles (20 points total)
The exact point allocations will change from assignment to assignment. In general, because it is
impossible for me to imagine all the ways thing can go wrong, grade somewhat holistically
instead of sticking to the rubric strictly.

Below, 1-6 are the same as assignment 2 and are allocated a total of 8 points. Most students
should really have these 8 right already. Minor violations get 1 point off, major 2-3. 7 is on the
binary search and new to this assignment and gets another 12 points.

206 Assignment 5 (binary search)

1. private Instance variables and getters
a. Any non-private instance variables, including missing modifier

2. public static final constants instead of integer/double literals - any literal that
has reason to be changed later should be a constant

a. Cases noted
i. Using “00000” directly in code

ii. Using [0] , [1] , [2] … directly in code after calling split
3. Constructor must initialize all instance variables

a. Check Place, LocatedPlace and PopulatedPlace constructors
b. LocatedPlace and PopulatedPlace constructors must call super

appropriately
4. Reasonable designs for Place , LocatedPlace , PopulatedPlace , LoopupZip and

no additional classes (besides Main of course)
a. Place has zipcode, town and state instance variables (as String) and no

additional. Has toString overridden
b. LocatedPlace has latitude and longitude instance variables as double, not

String and no additional. toString appropriately overridden. Preferrably by
calling super.toString() first (don’t take off though, just point it out)

c. PopulatedPlace has population instance variable as int, not String, and no
additional. toString appropriately overridden. Preferrably by calling
super.toString() first (don’t take off though, just point it out)

d. LookupZip doesn’t have instance variables (constants are not instance
variables and they should have them!) and holds the methods parseLine (if
exists), readZipCodes and lookupZip

5. Method designs and data weaving
a. parseLine , readZipCodes and lookupZip should have reasonable

designs - any abuse/overcall/redundant use gets -1:
i. It is acceptable to not have a parseLine and merge the functionality into

readZipCodes directly. Another approach is to write two different
versions of parseLine , one for each file. parseLine (if there is one)
should NOT have a loop

ii. readZipCodes should process both files
1. Both files are read only once
2. Creates and returns the final ArrayList

iii. lookupZip is called in a while loop in main , once per lookup/user input
1. Scanner for user input is created once outside of the loop, not

over and over again. This breaks redirection.
6. Only one correctly-sized ArrayList of Place used and created only once

a. An ArrayList<Place> of the appropriate size is created only once after
uszipcodes.csv is read. It holds either Place or PopulatedPlace objects.

b. When reading ziplocs.csv, replace Place with LocatedPlace or update
PopulatedPlace objects in ArrayList with setters

c. Any additional data structure -1
i. This includes creating ArrayList in a loop over and over again

7. Binary search 12 points - it is acceptable whether binary search is implemented
imperatively (with a while loop) or recursively

a. Place implements Comparable
b. Binary search uses Place object comparison - this is tied into the one above.

They should conduct binary search by making a new dummy Place object (with
the given zip) and search with that as a target.

i. If they simply used compareTo from String instead - in other words, their
Place objects are not comparable, take 3 points off.

ii. If they do other weird things, like converting to integers, compare string to
a Place, etc, take more, upto 6 points

iii. If they didn’t use compareTo at all, take 6 points off
c. Both searches use binary search, the one in readZipCodes and the one in

Main

