
CS206:Spring 2019

Lab 5

1. Download PostfixEvaluator.java from ~dxu/handouts/labs. Study the code. Test it
using TestPostfixEvaluator.java. Write a Java program to convert a postfix expression
to a parenthesized infix expression. Read a postfix expression from the user. Convert the
postfix expression to infix and display it to the user. The operators to be considered are
+, -, *, /, %. This program should be very similar to PostfixEvaluator.java.

Sample Input 1

5 6 + 9 *

Output

((5 + 6) * 9)

Sample Input 2

8 9 10 + *

Output

(8 * (9 + 10))

2. Implement a DoubleStack class such that

• a single underlying array stores two different stacks (stack 1 and stack 2), one grows
from index 0 upward, one grows from the end of the array down. So these two stacks
grow towards each other. The top indexes are denoted by top1 and top2 for stack 1 and
stack 2, respectively. Thus, there are three instance variables: E[] theArray, int top1,
int top2

• theArray locations 0 to top1 contain elements in stack 1 and theArray locations
theArray.length-1 downto top2 stores the elements in stack 2.

• Write methods

– push(int stackId, E e): push e onto stack stackId (1 or 2). In other words, it
will push onto stack 1 if stackId==1 and onto stack 2 if stackId==2. Throw an
IllegalStateException if stack is full - for now.

– E pop(int stackId): pop from stackId, return null if empty.

– E top(int stackId): top elememtn from stackId, return null if empty.

– int size(int stackId): return size of stack stackId

– boolean isEmpty(int stackId)

– printStack(int stackId)

1

that will implement the push, pop, top, size, isEmpty, and printStack operations for
the stack given by parameter stackId (1 for stack 1, 2 for stack 2)

3. Change push so that if the array gets full, instead of throwing an exception, resize the array
to double size.

2

