
1	
	

CMSC	113	–	COMPUTER	SCIENCE	1	(Prof.	Kumar)	
Lab#1:	Hello	Computer	Science	

	

Objective	

	 Familiarize	yourself	with	Linux	(command	line	shell,	basic	commands),	and	also	write	your	first	
Java	program	and	learn	how	to	compile	and	run	a	program.	

Linux	

This	lab	has	three	parts-	PARTA,	PARTB,	and	PART	C.	Our	goal	today	is	to	learn	some	basic	Linux	
commands	to	navigate	files	and	directories	(PART	A),	learn	how	to	create	and	edit	text	files	(PART	B),	
and	finally,	how	to	write,	compile,	and	run	Java	programs.	Please	follow	the	handout	in	the	order	
written	and	DO	everything	that	is	requested	of	you.	Do	not	hesitate	to	ask	the	instructor	in	case	you	
have	any	questions	during	the	lab.	This	is	highly	encouraged!	You	may	not	be	able	to	complete	the	
entire	lab	in	today’s	section.	This	is	by	design.	Please,	take	some	time	this	week,	before	your	next	class,	
to	return	to	the	lab	to	finish.	We	recommend	making	full	use	of	TA	Hours	(6:00p	to	10:00p)	for	this.	

At	the	end	of	each	part,	you	are	asked	to	fill	out	the	Lab	Report	(last	sheet	in	this	handout).	This	charts	
your	progress	in	this	lab.	Please	remember	to	submit	this	handout	to	your	instructor	before	leaving	the	
lab.	Submitting	the	report	will	count	as	proof	of	attendance	in	the	lab.	You	are	not	required	to	complete	
everything	in	the	Lab	Report.	

Part	A:	Working	with	the	Linux	command	line	

Before	doing	any	Java	programming,	let’s	do	a	warmup	on	learning	and	working	with	the	command	line.	
First,	log	in	to	your	Linux	account.	If	you	do	not	have	a	log	in,	please	see	your	instructor.	

Next,	you	will	open	a	CLI	window	(aka	Terminal	emulator).	From	the	Applications	drop-down	menu	
(see	the	top	bar	of	your	screen),	navigate	into	the	System	Tools	sub-menu	and	select	MATE	
Terminal	(MATE	is	pronounced	ma-tay).	A	window	will	pop	up	in	the	middle	of	your	screen	and	it	will	
have	a	prompt	that	looks	like	this:	

[xena@codewarrior	~]$	

The	above	is	a	command	prompt,	implying	that	the	system	is	ready	for	your	commands.	The	command	
prompt	is	preconfigured	to	show	your	username	(in	this	case,	xena),	the	symbol	@,	followed	by	the	
name	of	the	computer	you	are	logged	into	(in	this	case,	codewarrior).	This	is	then	followed	by	the	
symbol	“~”	(which	stands	for	your	current	home	directory),	and	finally	ends	with	a	“$”.		

You	type	commands	at	the	prompt	and	when	you	hit	the	RETURN	key,	the	command	is	executed	or	
carried	out.	For	example,	enter	the	command	“whoami”:	

[xena@codewarrior	~]$	whoami	
xena	

The	whoami	command	reports	back	the	username	of	the	person	currently	logged	in	(in	this	case,	xena).	
Next,	let	us	learn	some	other	basic	commands.	

What	is	my	present	directory	(i.e.	home	directory):	pwd	



2	
	

[xena@codewarrior	~]$	pwd	
/home/xena	

Directories	are	organized	in	a	tree	structure.	Reading	the	result	of	the	above	command	from	left	to	
right,	“/”	represents	the	root	directory,	home	is	a	subdirectory	of	/	that	is	the	parent	directory	of	all	
users	on	this	computer,	of	which	xena	is	one.	After	the	first	/,	the	rest	of	the	/’s	are	used	to	separate	
subdirectories	under	them.	The	string	/home/xena	is	also	called	a	directory	path.	For	users,	the	symbol	
“~”	is	a	shorthand	for	their	home	directory	/home/xena.	More	on	this	later.		

We	will	make	a	new	directory,	called	cs113	(/home/xena/cs113),	so	that	you	can	store	all	your	files	
related	to	this	course	in	or	under	that	directory.	To	make	a	new	directory,	use	the	command:	mkdir	

[xena@codewarrior	~]$	mkdir	cs113	
[xena@codewarrior	~]$	

While	there	is	no	visible	result,	the	prompt	reappears,	this	creates	a	directory,	cs113,	in	the	home	
directory	(xena).	Since	directories	are	organized	in	a	tree	structure	cs113	is	a	subdirectory	under	your	
home	directory.	To	examine	the	contents	of	a	directory,	the	command	ls	is	used	(ls	stands	for	show	a	
listing	of	this	directory):	

[xena@codewarrior	~]$	ls	
abc.txt	 cs113	hello.java	
letters	 mail	

It	appears	from	above	that	xena’s	home	directory	contains	five	items:	a	text	file-abc.txt,	the	cs113	
directory	(just	created),	a	Java	program-hello.java,	etc.	Thus,	in	Linux,	files	and	directories	coexist	in	
all	directories.	One	way	to	tell	files	apart	from	directories	is	to	note	the	file	extension(s).	For	example,	
“.txt”	indicates	a	text	file,	“.java”	is	a	Java	program,	etc.	Later	we	will	see	how	you	can	tell	which	is	
which.	

You	can	navigate	in	and	out	of	directories	using	the	cd	command	(cd	stands	for	change	directory):	

[xena@codewarrior	~]$	cd	cs113	
[xena@codewarrior	cs113]$	

Look	at	the	new	prompt,	it	clearly	indicated	that	you	are	now	in	the	cs113	directory.	Go	ahead	and	
issue	the	pwd	command	now:	

[xena@codewarrior	cs113]$	pwd	
/home/xena/cs113	

Also,	use	the	ls	command	to	examine	its	contents.	It	should	be	empty.	You	will	just	get	the	prompt	
back.	

The	cd	command	can	be	used	to	navigate	to	any	directory.	You	will	use	it	to	navigate	up	and	down	a	
directory	tree.	For	example,	when	you	are	in	the	cs113	directory	(as	you	would	be	if	you	are	following	
along),	you	can	go	up	into	its	parent	directory	(/home/xena)	by	doing:	

[xena@codewarrior	246]$	cd	..	
[xena@codewarrior	~]$	

Try	it	one	more	time:	



3	
	

[xena@codewarrior	~]$	cd	..	
[xena@codewarrior	/home]$	pwd	
/home	

Thus,	“..”	is	shorthand	for	the	parent	directory.	You	can	also	enter	the	entire	directory	path	to	go	to	
that	directory:	

[xena@codewarrior	~]$	cd	/home/xena/cs113	
[xena@codewarrior	cs113]$	pwd	
/home/xena/cs113	

No	matter	what	directory	you	are	in,	you	can	always	get	to	your	home	directory	by	just	typing	the	cd	
command	by	itself:	

[xena@codewarrior	home]$	cd	
[xena@codewarrior	~]$	

Also,	try	the	command:	cd	~	

What	does	it	do?	Next,	try	this:	Navigate	to	go	to	the	root	directory	(/).	Check,	using	pwd,	to	make	sure	
that	you	are	there.	Check	its	contents	(using	ls).	Then,	to	go	back	to	your	cs113	directory,	enter	the	
command:	cd	~/cs113	

Now	that	you	are	comfortable	travelling	in	and	out	of	directories,	we	can	learn	about	copying	files	from	
one	directory	to	another.	The	simplest	form	of	a	copy	command	is:	

cp	item1	item2	

This	command	creates	a	copy	of	file	item1	into	a	file	named	item2,	both	in	the	same	directory.	
Alternately,	you	can	also	specify	to	copy	a	file	into	another	directory:	

cp	item1	directory-path	

This	command	creates	a	copy	of	item1	into	the	directory	specified.	The	resulting	copy	will	also	be	
named	item1.	See	item#5	in	the	exercise	below	for	an	example.	

Exercise	1:	Do	the	following:	

Navigate	to	the	directory	~dkumar/CMSC113/Lab1	

Check	its	contents,	using	ls.	

You	will	notice	a	file	named	README.txt	

In	order	to	read	the	contents	of	the	file	you	can	use	any	of	the	following	commands:	
	
cat	README.txt	
more	README.txt	
less	README.txt	
	
These	commands	will	each	show	the	contents	of	the	file	specified.	You	will	not	notice	any	difference	in	
the	way	these	commands	behave.	We	will	examine	these	later.	
	

Copy	the	file	cli.tar	into	your	cs113	directory:	cp	cli.tar	~/cs113/ 



4	
	

Go	back	to	your	cs113	directory	(cd	~/cs113).	

Check	to	see	if	the	file	cli.tar	is	there.	If	you	are	lost	at	this	point,	please	ask	your	instructor!	

Issue	the	command:	tar	xvf	cli.tar	

The	tar	command	expands	the	contents	of	archive	files	(extension	.tar).	Thus,	the	result	of	expanding	
cli.tar	in	the	steps	above	will	create	several	files	and	directories	in	your	cs113	directory.		

Before	starting	the	next	exercise,	please	answer	question	1	in	Lab	1	Report.	

Exercise	2:	Using	the	commands	you	have	learned	above,	answer	these	questions:	

1. What	is	your	home	directory?	(Hint:	pwd)	 	 __________	
2. Where	did	you	download	the	cli.tar	file	to?	 	 __________	
3. How	many	.txt	files	were	expanded	from	cli.tar?	 __________	
4. How	many	directories	were	expanded	from	cli.tar?	 __________	
5. Move	(mv)	all	the	.txt	files	out	from	their	directories,	putting	them	all	in	the	cli	directory.	The	

move	command	(mv)	is	used	similar	to	the	copy	(cp)	command,	except	instead	of	creating	a	
copy	of	the	file	specified,	it	physically	moves	it	to	the	specified	destination.	If	you	are	having	any	
difficulty	with	this	step,	consult	your	instructor.	

Run	cat	*.txt.	This	will	print	out	the	contents	of	all	the	files.	What	message	do	you	see?	 	
	 	 	 	 	 	 __________	

Before	starting	the	next	section,	please	fill	out	Question	2	on	the	Lab	1	Report.	

PART	B:	Creating/Editing	a	text	file	

In	order	to	create	a	text	file	(or	a	program	file),	you	can	use	a	text	editor.	Linux	offers	several	editors.	
Some	of	the	more	popular	choices	are	vi,	vim,	Sublime,	emacs,	Atom,	etc.	vi,	vim,	and	
emacs	can	be	used	to	create/edit	a	file	from	within	the	command	line.	Emacs	and	Atom	also	offer	a	
WIMP/GUI	interface.	For	this	lab,	use	the	Atom	editor.	You	can	run	it	as	an	application	by	using	your	
mouse	(remember	the	mouse?!)	to	drop	down	the	Applications	menu,	select	the	Accessories	
sub-menu,	and	selecting	Atom	(second	item	on	that	menu).	The	editor	will	start	and	give	you	a	large	
window	that	fills	your	screen.	

Exercise	3:	Create	a	new	text	file.	

From	the	File	menu	in	Atom,	create	a	new	(untitled)	file	and	enter	the	following	text:	

Talking	Java	

Though	clarity	&	sense	we	seek	
We’re	prone	to	misinterpretation	
For	limitless	communication	
In	Java	only	we	must	speak!	

	 -:	Martynas	Petkevicius,	2013	

Next,	again	using	the	File	menu,	save	the	file	in	your	~/cs113/Lab1	directory	with	the	name	
java.txt.	Go	back	to	your	terminal	window	and	check	to	see	that	the	file	is	now	present	in	the	Lab1	
directory.	Check	its	contents	(using	cat/less/more)	to	see	that	the	above	text	is	there.	

Before	starting	the	next	section,	please	answer	Question	3	in	the	Lab	1	Report.	



5	
	

	

PART	C:	Creating	your	First	Java	Program	

As	shown	in	class,	creating	and	running	Java	programs	requires	three	steps:	

• Use	an	Editor	to	write	the	program	and	save	it	in	a	file	(extension	.java)	–	Atom	
• Compile	the	Java	program.	Correct	any	syntax	errors	reported	–	javac	
• Run	the	program	–	java	

Let’s	see	how	we	do	this.	First,	we	need	to	have	a	program	we’d	like	to	run:	

class	HelloWorld	{	
			public	static	void	main(String[]	args)	{	
						System.out.println(“Hello,	World!”);	
			}	//	main()	
}	//	class	HelloWorld	

	

1. Use	an	Editor	to	create	a	program/source	file.	
	
Using	Atom,	as	you	did	in	PART	B,	enter	the	program	above	into	a	file	called	
HelloWorld.java.	The	name	of	the	file	should	be	the	same	as	the	name	of	the	class	(always!).	
Make	sure	you	have	saved	the	program	in	the	cs113	directory.	[Optional:	You	may	want	to	
create	a	directory,	called	Lab1,	and	do	this	there.]	
	

2. Compile	the	program.	
	
To	compile	the	program,	use	the	following	command:	
	
[xena@codewarrior	home]$	javac	HelloWorld.java	
[xena@codewarrior	home]$	
	
Depending	on	how	correctly	you	typed	your	program,	you	may	or	may	not	have	any	syntax	
errors.	In	case	there	are	no	errors,	the	prompt	will	be	returned	as	shown	above.	Otherwise,	
these	will	be	reported	following	the	command.	You	will	then	have	to	correct	the	errors	in	the	
Atom	window,	save	the	file,	and	then	try	to	compile	again.	
	
So,	what	is	the	purpose	of	compiling	the	program?	Well,	one	is	to	detect	and	ensure	that	what	
you	entered	is	a	correct	Java	program.	Second,	to	translate	the	Java	program	into	Java	byte	
code.	This	is	essentially	a	version	of	your	program	translated	into	a	more	primitive	language	that	
a	Java	Virtual	Machine	(JVM)	will	be	able	to	understand	and	run	it.	More	on	that	in	class.		
	
The	byte	code	generated	by	the	compiler	is	stored	in	a	new	file.	In	this	case,	since	we	defined	
the	class	HelloWorld,	the	file	will	be	called	HelloWorld.class.	Go	ahead	and	look	at	the	
contents	of	your	cs113	directory	(using	ls).	You	will	see	the	file	HelloWorld.class	sitting	
there.	We	are	now	ready	to	run	your	program.	
	

3. Run	the	program	
	



6	
	

You	run	the	program	by	invoking	the	JVM	(which	is	called	java).	The	JVM	needs	to	know	the	
name	of	the	class	that	makes	up	your	program	(i.e	HelloWorld).	Here	is	the	command:	
[xena@codewarrior	home]$	java	HelloWorld	
Hello,	World!	
[xena@codewarrior	home]$	
	
The	program	runs,	you	can	see	its	output	on	the	line	after	the	java	command.	And	a	new	prompt	
is	returned.	You	can	now	run	the	program	again,	using	the	same	command.	
	

Exercise	3:	Write	a	new	program,	called	JavaJoe,	that	prints	out	the	following	lyrics:	
	
I	love	coffee	
I	love	tea	
I	love	the	Java	Joe	
And	it	loves	me	

Exercise	4:	Write	the	program,	UseArgument	that	is	described	on	Page	7	(Program	1.1.2)	of	your	text.	It	
is	shown	below:	

public	class	UseArgument	{	
			public	static	void	main(String[]	args)	{	
						System.out.print(“Hi,	”);	
						System.out.println(args[0]);	
						System.out.println(“.	How	are	you?”);	
			}	//	main()	
}	//	class	UseArgument	

You	will	store	it	in	a	file,	UseArgument.java.	Compile	it	(using	javac),	and	run	it	using	the	command:	
	
java	UseArgument	<your	name>	

Time	to	Digest	

In	part	A,	you	learned	some	basics	of	using	the	Linux	command	line	interface	(CLI)	through	a	terminal	
window.	Review	the	following	commands:	

whoami	
pwd	
mkdir	
ls	
cd	
cp	
mv	
cat/more/less	
ETC.	

In	PART	B	you	learned	how	to	create	basic	text	files.	And,	as	you	saw	in	PART	C,	all	program	files	are	also	
text	files.	In	PART	C	you	learned	how	to	create,	compile,	and	run	simple	Java	programs.	

This	is	a	good	start.	Before	next	lab,	please	review	Section	1.1	of	your	text	and	try	out	all	Exercises	(1.1.1	
through	1.1.6).	

Burp
! 

	


