
Quadtrees and Image Processing

CS 206 - Introduction to Data Structures

Assignment 9 - due Friday 5/3

This is a group project to be done in pairs. You should form a group of two as soon
as possible.

1 Digital Images

A digital image is simply a rectangular grid of dots, often rendered as squares. Each dot
is of a single solid color and is known as a pixel (short for picture element). The reason
why we do not see individual pixels as squares is because they are very small. Resolution
of a display device is measured by pixel density, or number of pixels per inch (PPI).
Digital displays marketed from 2009 onwards have at least 100 PPI, with the newer and
sharper ones reaching 200–300 PPI. Pixels are commonly arranged in a two-dimensional
grid, the dimensions of which are specified by the image’s size in pixel resolution. For
example, when we have a JPEG image of 1920x1080, it means the image has 1920 pixels
in its width and 1080 pixels in its height. It has 1920x1080 = 2,073,600 total pixels and
thus can also be referred to as a 2-megapixel image. Zooming into an image repeatedly
will allow you to reach low enough resolution to see individual pixels, at which point you
also lose most recognizable details in the image. This is called pixelation, also known as
pixelization when the resolution lowering is done deliberately, a technique often employed
in censorship.

Figure 1: An image showing individual pixels rendered as squares

In Computer Graphics, an image is also known as a bitmap, and is a data structure
as well as an image representation corresponding to a spatially mapped array of bits,
a natural representation of a pixel grid. The color representation of a pixel typically
requires more than a single bit (which can only represent two colors, black and white),
and the number of bits used per pixel is known as color depth. Colors are encoded as
integers from 0 to 255, where 0 is black (no color) and 255 is full color and use the RGB
color model in which red, green and blue are (added) blended together to produce a broad
spectrum of colors. Consult the wikipedia page https://en.wikipedia.org/wiki/RGB_
color_model for more details on RGB colors. Figure 2 shows three pixels with their

1

https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/RGB_color_model

individual RGB color values and indices at which they are stored in the pixel grid. For
example, the leftmost pixel can be found at row 81, column 123 and is colored with a red
value of 137, green value of 196, and blue value of 138. Note that an RGB value of (137,
137, and 138) would be light gray, and thus the combination of (137, 196, 138) comes out
light green.

Figure 2: Three pixels

2 Image Processing

Now that you see an image as an array of colors (given as integer triples), image processing
is as simple as looping over this array and changing the numbers! This is known as
“filtering”. Some simple image filters are for example:

1. negative - change each pixel (r, g, b) to (255-r, 255-g, 255-b)

2. grayscale - change each pixel (r, g, b) to (c, c, c) where c = r*0.3+g*0.59+b*0.11

3. tint - given a tint color (R, G, B), scale each pixel color (r, g, b) to
(r/255*R, g/255*G, b/255*B). Note that full white (255, 255, 255) will be-
come exactly (R, G, B), and everything else will be scaled proportionally between
0 and R/G/B.

2.1 Convolution Filters

A another popuplar technique is to compute a pixel’s color based on its immediate neigh-
bors, including itself. We will base our discussions of these filters on a 3x3 neighborhood,
the smallest and simplest; however, in practice neighborhoods can be larger, as well as
differently shaped than a square (box). A 3x3 box filter computes the pixel color via
a weighted average of all 9 pixels using some predetermined weights. If we consider an
input pixel input[i, j], then the weighted average can be defined as:

output[i, j] = w1 × input[i− 1, j − 1] + w2 × input[i, j − 1] + w3 × input[i + 1, j − 1]

+ w4 × input[i− 1, j] + w5 × input[i, j] + w6 × input[i + 1, j]

+ w7 × input[i− 1, j + 1] + w8 × input[i, j + 1] + w9 × input[i + 1, j + 1]

The choice of the weights (kernel) has dramatic effect on the resulting image. One
popular and useful kernel is edge detection, with the weights set as:

2

−1 −1 −1
−1 8 −1
−1 −1 −1

That is:

output[i, j] = −input[i− 1, j − 1]− input[i, j − 1]− input[i + 1, j − 1]

− input[i− 1, j] + 8× input[i, j]− input[i + 1, j]

− input[i− 1, j + 1]− input[i, j + 1]− input[i + 1, j + 1]

Edge detection works by enhancing the differences between the center pixel and those
that surround it. When you perceive an edge in an image, you are simply noticing that
there is a (sharper) change in color/brightness. Thus, edge detection works by setting a
pixel to black (0) if it’s not very different from its neighbors, and trend towards white
(255) the more different it is. Consider what happens when the filter above is applied to
an area of similar colors. The sum will trend towards zero. If the pixel is high contrast
and bright, the sum will become more positive.

Figure 3: edge detection

3 Quadtree

A quadtree is a tree data structure in which each internal node has exactly four children
and is most often used to partition a two-dimensional space by recursively subdividing
it into four quadrants. On an image, a quadtree recursively divides the image into four

Figure 4: Quadtree

subimages and stops when some criteria are met or reaching a single pixel. Each node

3

either stores the color of the pixel (if it’s a single pixel), or the average of the colors of
all pixels in the quadrant.

3.1 Quadtree Image Compression

A quadtree decomposition can be used to compress an image in stages as shown in
Figure 5. This computes a hierachy of images that represent a high quality image with
increasingly more details (in the right places). The idea is to split only in those quadrants
where the colors of the children differ greatly (according to some threshold) from that
of the parent. Note the quadtree is selective and regions we choose to not split on
presumably already have more or less the same colors and can afford to be blurred into
the mean color. When the subdivion stops, the compressed image can be recovered from
the leaves of the quadtree. Different settings of the difference threshold will generate
compressions at different resolutions.

Figure 5: Animated quadtree compression of an image step by step

Besides compression, there are many applications for image hierachies - a form of
level-of-detail techniques in Computer Graphics. In computer games for example, if a
player is far away, only low-res textures are applied on objects and as the player gets
closer, textures of higher and higher resolutions are swapped in.

The algorithm is: split the image into four subimages, for each current node ni,
calculate the mean color Ci and mean squared error Ei = 1

N2 ΣN
x=1Σ

N
y=1|ni(x, y) − Ci|2.

The error Ei is the average of the cumulative squared error between the compressed
representation Ci and the original, which is computed as the squared Euclidean distance
between the mean color Ci and all original pixel colors in the quadrant ni of size (N×N).
That is, for a pixel with color (r, g, b), the squared error should be computed as ((r −
Ci.r)2 + (g−Ci.g)2 + (b−Ci.b)

2. The usual square root is not needed. If a subimage has
error greater than some threshold, split into four further subimages.

4

Figure 6: Quadtree image compression, different thresholds

4 Requirements

1. Given an input image, create a quadtree decomposition of the image and compute
8 compressed images of increasing resolutions as explained in 3.1. These 8 images
should be generated at compression levels 0.002, 0.004, 0.01, 0.033, 0.077, 0.2,
0.5, 0.75. The compression level is defined as the number of leaves in the quadtree
divided by the number of the original pixel count. Note lower levels represent higher
compression ratio. The computed fractions do not have to match the numbers
exactly, approximately is fine.

2. Edge detection is expensive, since the filters require multiple (9 for 3x3, 25 for 5x5,
etc) operations per pixel. With high resolution digital images having pixel counts
in the 10s of millions and results needed in real time, it is often preferred to only
apply the filter in important areas, which is where the quadtree comes in. Based
on the same quadtree decompostion of an image, apply the edge detection filtering
as explained in 2.1 only to those nodes of a sufficiently small size and replace the
color of the larger nodes with black.

3. Extra credit: design your own filter based on the quadtree decomposition and do
something interesting to the image. Explain your design in your README.

4. For debugging purposes, implement the ability to show the outline of the quadtree
cells as shown on the left half in Figure 6. This is a required functionality requested
by the commandline flag -t. You should implement this BEFORE your program is
fully functional, as it is designed to help you debug. Programming it just to satisfy
the requirement is the wrong order!

5. It is acceptable to only work on square images. If the input image is not square,
print appropriate error message and exit. On the other hand, it’s not that much
work to adapt to rectangular images and if yours does not need the restriction to
square images, please note clearly in README. Extra credit will be given.

5

5 Images Formats

In this assignment, our input will be images given in the Portable Pixel Map (PPM)
format, which is a simple text file listing colors of each pixel in an image, as explained
here: https://en.wikipedia.org/wiki/Netpbm_format Your output will be image(s)
in the same format. Note that there are two versions of PPM, P3 (also known as plain or
ascii) and P6 (binary). P6 is much more widely found because it is more space efficient
and less prone to parsing difficulties. On the other hand P3 is plain text and thus easier
to debug. We will be using the P3 format. Note that P3 doesn’t specify the number
of pixel colors per line, thus you should be lenient when parsing P3 format and accept
anything that looks remotely like a P3. Most image readers will convert to/from ppm
to any other standard image format. On Linux, the command is called convert, which
is part of the imagemagick software suite. An image called test.png can be converted
using the following command: convert test.png -compress none test.ppm. You can
substitute png for any other populuar image format extensions such as jpg and tif. For
more information, consult the manual pages using man convert.

A collection of test images can be found at ~dxu/handouts/cs206/data/a9/ppms.

6 Command Line Input

You will receive an image file on the command line following the -i flag as your input:
Java Main -i test.ppm. In addition, support the following flags:

1. -o <filename> indicates the root name of the output file that your program should
write to

2. -c indicates that you should perform image compression

3. -e for edge detection

4. -x for running your own filter (if doing EC). Note that you can also add arguments
to your -x flag if your filter design calls for it (typically to set some level or default).
If so, explain how to supply these arguments in your README.

5. -t indicates that output images should have the quadtree outlined

For example:
java Main -c -i test.ppm -o out will generate 8 compressed images of test.ppm

named out-1.ppm, out-2.ppm, ..., out-8.ppm, where out-1.ppm is the image with the
lowest resolution/highest compression and so on. java Main -e -t -i test.ppm -o out

will generate one output image called out.ppm which is the result of applying edge de-
tection to test.ppm, with the quadtree outlined. You may assume that only one of -c,
-e or -x will be given. However, -t may or may not be present on any filter. Order of
the flags should not matter, i.e. java Main -o out -e -i test.ppm -t is equivalent
to java Main -e -t -i test.ppm -o out

7 Where to Start

At this point, you should be able to design a class structure on your own, so we do not
give you specific suggestions here. However, here are some hints about tasks that you

6

https://en.wikipedia.org/wiki/Netpbm_format

should make sure you can perform:

1. Be able to read in an image from a given file name and write out an image to a
given file name.

2. Take an image and generate a quadtree (both compressed and not compressed).

3. Apply filters to an image.

8 Electronic Submissions

1. README: The usual plain text file README

Your name:

How to compile: Leave empty if it’s just javac Main.java

How to run it: Leave empty if it’s just java Main

Known Bugs and Limitations: List any known bugs, deficiencies, or limitations
with respect to the project specifications. Documented bugs will receive less
deduction versus uncaught ones.

Discussion: Design of your own filter

2. Source files: all .java files

DO NOT INCLUDE: Please delete all executable bytecode (.class) files prior to
submission.

To submit, store everything (README and source files) in a directory called A9.
Then follow the directions here:
https://systems.cs.brynmawr.edu/Submit_assignments

7

	Digital Images
	Image Processing
	Convolution Filters

	Quadtree
	Quadtree Image Compression

	Requirements
	Images Formats
	Command Line Input
	Where to Start
	Electronic Submissions

	anm0:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

