
Stacks and Queues

CS 206 - Introduction to Data Structures

Assignment 4 - due Tuesday 3/5

1 Tasks

Before we start, it is important to note that you are not allowed to change the
given Stack.java, ArrayStack.java, Queue.java, and Deque.java.

Part 1. Copy ArrayStack.java and Stack.java from ~dxu/handouts/cs206/

code/lec09. Copy Queue.java from ~dxu/handouts/cs206/code/lec10.
Write a class called TwoStacksQueue that implements the Queue interface
as follows. Your class will store two ArrayStack objects as instance vari-
ables but no other. A TwoStacksQueue object is a Queue and should be-
have as a Queue (FIFO). Since you are using two stacks to simulate a
Queue, it will certainly not be the most efficient implementation of a Queue
and that’s ok - just as long as you know that and can analyze the run-
time appropriately in the README - see below. There should not be any
other array/ArrayList/linked list used within your implementation. Over-
ride toString for TwoStacksQueue to return a String that contains the
contents of the current Queue in the following format
(elment1, element2, ..., elementn).

Your README should provide a discussion on the design of your data structure,
in particular how you implemented enqueue and dequeue operations. In
addition, you should provide a worse-case big-O analysis of each of these
operations.

Part 2. Implement the Deque ADT (double-ended queue where we can insert
and delete at both ends) with an array used in a circular fashion. Copy
Deque.java from ~dxu/handouts/cs206/code/lec10, which specifies the
the Deque interface that you must implement. Name your class ArrayDeque.
Override toString for ArrayDeque to return a String that contains the
contents of the current Deque in the following format
(elment1, element2, ..., elementn).

1



Study how we implemented the Queue ADT using a circular array for refer-
ence. You should find the discussion in Section 6.3 of your textbook helpful
as well.

Part 3. Implement a new stack data structure (call it NewStack), storing inte-
gers, that supports the operations push, pop and an additional operation
minElement, which returns the smallest element currently in the stack. All
operations should run in O(1) worst case time - note that this means no
loops of any kind. Explain how your data structure works in your README
and justify the O(1). It is acceptable to write a non-generic NewStack that
only stores integers and doesn’t implement the Stack interface. Override
toString for NewStack to return a String that contains the contents of the
current stack in the following format
(elment1, element2, ..., elementn).

Part 4. Write a driver program Main.java that tests all the methods you have
implemented in your TwoStacksQueue, ArrayDeque, NewStack implementa-
tions in above parts. You should include enough tests to clearly demonstrate
that your implementation works.

2 Electronic Submissions

1. README: The usual plain text file README

Your name:

How to compile: Leave empty if it’s just javac Main.java

How to run it: Leave empty if it’s just java Main

Known Bugs and Limitations: List any known bugs, deficiencies, or lim-
itations with respect to the project specifications. Documented bugs
will receive less deduction versus uncaught ones.

Write-up: Contents as discussed above for Part 1 and 3

2. Source files: all .java files

3. Data files used: none

DO NOT INCLUDE: Please delete all executable bytecode (.class) files prior
to submission.

To submit, store everything (README and source files) in a directory called A4.
Then follow the directions here:
https://systems.cs.brynmawr.edu/Submit_assignments

2


	Tasks
	Electronic Submissions

