Stacks and Queues

CS 206 - Introduction to Data Structures

Assignment 4 - due Tuesday 3/5

1 Tasks

Before we start, it is important to note that you are not allowed to change the
given Stack. java, ArrayStack. java, Queue. java, and Deque. java.

Part 1. Copy ArrayStack. java and Stack. java from ~“dxu/handouts/cs206/
code/1lec09. Copy Queue.java from ~“dxu/handouts/cs206/code/lec10.
Write a class called TwoStacksQueue that implements the Queue interface
as follows. Your class will store two ArrayStack objects as instance vari-
ables but no other. A TwoStacksQueue object is a Queue and should be-
have as a Queue (FIFO). Since you are using two stacks to simulate a
Queue, it will certainly not be the most efficient implementation of a Queue
and that’s ok - just as long as you know that and can analyze the run-
time appropriately in the README - see below. There should not be any
other array/ArrayList/linked list used within your implementation. Over-
ride toString for TwoStacksQueue to return a String that contains the
contents of the current Queue in the following format
(elmentl, element2, ..., elementn).

Your README should provide a discussion on the design of your data structure,
in particular how you implemented enqueue and dequeue operations. In
addition, you should provide a worse-case big-O analysis of each of these
operations.

Part 2. Implement the Deque ADT (double-ended queue where we can insert
and delete at both ends) with an array used in a circular fashion. Copy
Deque. java from ~“dxu/handouts/cs206/code/lec10, which specifies the
the Deque interface that you must implement. Name your class ArrayDeque.
Override toString for ArrayDeque to return a String that contains the
contents of the current Deque in the following format
(elmentl, element2, ..., elementn).



Study how we implemented the Queue ADT using a circular array for refer-
ence. You should find the discussion in Section 6.3 of your textbook helpful
as well.

Part 3. Implement a new stack data structure (call it NewStack), storing inte-
gers, that supports the operations push, pop and an additional operation
minElement, which returns the smallest element currently in the stack. All
operations should run in O(1) worst case time - note that this means no
loops of any kind. Explain how your data structure works in your README
and justify the O(1). It is acceptable to write a non-generic NewStack that
only stores integers and doesn’t implement the Stack interface. Override
toString for NewStack to return a String that contains the contents of the
current stack in the following format
(elmentl, element2, ..., elementn).

Part 4. Write a driver program Main. java that tests all the methods you have
implemented in your TwoStacksQueue, ArrayDeque, NewStack implementa-
tions in above parts. You should include enough tests to clearly demonstrate
that your implementation works.

2 Electronic Submissions

1. README: The usual plain text file README

Your name:
How to compile: Leave empty if it’s just javac Main. java
How to run it: Leave empty if it’s just java Main

Known Bugs and Limitations: List any known bugs, deficiencies, or lim-
itations with respect to the project specifications. Documented bugs
will receive less deduction versus uncaught ones.

Write-up: Contents as discussed above for Part 1 and 3
2. Source files: all . java files
3. Data files used: none

DO NOT INCLUDE: Please delete all executable bytecode (. class) files prior
to submission.

To submit, store everything (README and source files) in a directory called A4.
Then follow the directions here:
https://systems.cs.brynmawr.edu/Submit_assignments

2



	Tasks
	Electronic Submissions

