
ArrayList and Inheritance - Zipcodes with
populations and locations

CS 206 - Introduction to Data Structures

Assignment 2 - due Thursday 2/7

In this project, we will practice ArrayList and object-oriented design with in-
heritance. You will build on top of your Assignment 1. There is now a second
input file ziplocs.csv which gives information about zipcodes and their associ-
ated latitudes and longitudes (as decimal numbers), among other things (but not
population). Your task this week is to weave these two files together and organize
the data into classes stored in an ArrayList that allows us to perform similiar
lookups as those in Assignement 1.
One of the important goals of this class is to train you to become successful in-
dependent programmers who can translate a problem on paper to fully functional
code that solves the problem. Thus, each assignment is designed to give you less
detailed instructions. You will notice that for example, unlike Assignment 1, this
assignment no longer contains exact method signatures or names any instance
variables. Instead, you are asked to think about what instance variables are nec-
essary and reasonable in order accomplish the tasks given here. In addition, not
having exact method signatures doesn’t mean anything goes. You are expected to
design functional and efficient methods much like those you had before. In other
words, Assignment 1 gave you an exact design you just had to implement. This
assignment asks you to flesh out a design much in the same style - basic steps are
still listed for you - see Section 2. I am happy to discuss design questions during
lecture, lab or office hours of course.

1 Input File Format

The file ziplocs.csv contains a header line at the top with column names, but
it does not list the number of entries in the file. Thereafter, the lines contain 12
comma-separated fields that look like this:

"07677","STANDARD","WOODCLIFF LAKE","NJ","PRIMARY",41.02,-74.05,"NA-

1



US-NJ-WOODCLIFF LAKE","false",2945,5471,325436960

We will only use three of these fields, the zipcode (#1), the latitude (#6) and the
longitude (#7). In the sample line, that is 07677 (in quotes), 41.02 and -74.05.
As in the last assignment, some lines are missing some information, but all lines
have the correct number of commas (11).
In your last assignment, you only read the zipcode, town and state fields from
uszipcodes.csv, but ignored the population information. You will now read the
total population field in uszipcodes.csv as well, if not missing.
By collating the data between uszipcodes.csv and ziplocs.csv, we can cate-
gorize all zipcodes into one of three categories: zipcodes with a population and
location, zipcodes with a location only, and zip codes without either. (Interest-
ingly, the dataset does not contain any zipcodes with a population but no loca-
tion.) We’ll call the first a PopulatedPlace, the second a LocatedPlace, and the
third just a Place. These types naturally form an inheritance hierarchy, where
PopulatedPlace is a subclass of LocatedPlace (every PopulatedPlace is also a
LocatedPlace) and LocatedPlace is a subclass of Place (every LocatedPlace is
also a Place).

2 Specific Tasks

1. All classes should be public in this assignment, and thus in their own file.

2. Override the toString method of your Place class to return an appropriate
string represenation. For example, the Place for Bryn Mawr should return
"Bryn Mawr, PA".

3. Write a new class LocatedPlace that is a subclass of Place. Include appro-
priate instance variables, constructor and getters.

4. The LocatedPlace class must also have an overridden toString method
that includes the location information in the string returned. For example,
for Bryn Mawr it would return the string "Bryn Mawr, PA 40.02 -75.31".

5. Write a new class PopulatedPlace that is a subclass of LocatedPlace. In-
clude appropriate instance variables, constructor and getters.

6. The PopulatedPlace class must also override the toString method to in-
clude the place’s population in the string. For Bryn Mawr, this would yield
"Bryn Mawr, PA 40.02 -75.31 21103".

2



7. Modify the readZipCodes method from LookupZip to read both data files,
constructing an ArrayList of Places and returns it. If a place’s population
is known, it will be represented by a PopulatedPlace object; otherwise, if a
place’s location is known, it will be represented by a LocatedPlace object;
otherwise it will be represented by a Place object.

One restriction is that readZipCodes should read each file only once: that
is, you should create a new Scanner for each file only once, not repeatedly.
You should also not reset these Scanners. You should read in one file first,
create objects to accumulate the partial data in that file, and then read the
other file, combining the entries appropriately. Note that the zipcodes in the
files are not in the same order.

Note that this new version returns an ArrayList, not an array. You might
find that you need to adapt your old parseLine or lookupZip methods.

8. Update the main method to work with your new methods. Recall that the
appropriate toString() will be used when you print your three different
Place objects.

Here’s a sample session:

zipcode: 19010

Bryn Mawr, PA 40.02 -75.31 21103

zipcode: 99400

No such zipcode

zipcode: 91729

Rancho Cucamonga, CA 34.09 -117.56

zipcode: 00000

Good Bye!

3 Electronic Submissions

At this point, you should have one Main.java, but also a separate .java for every
class you created (since they are all public).

1. README: The usual plain text file README

Your name:

How to compile: Leave empty if it’s just javac Main.java

3



How to run it: Leave empty if it’s just java Main

Known Bugs and Limitations: List any known bugs, deficiencies, or lim-
itations with respect to the project specifications. Documented bugs
will receive less deduction versus uncaught ones.

2. Source files: Main.java Place.java LocatedPlace.java

PopulatedPlace.java LookUpZip.java

3. Data files used: uszipcodes.csv ziplocs.csv

DO NOT INCLUDE: Please delete all executable bytecode (.class) files prior
to submission.

To submit, store everything (README, source files and data files) in a directory
called A2. Then follow the directions here:
https://systems.cs.brynmawr.edu/Submit_assignments

4


