Search

e Suppose have an array with 100 integers
e Unordered & unique
e How many will you have to look at to find a
particular integer that isin the set
e Best case

e Worst case
e Average case

Unordered Search

public class UnSearch {
public static void main(String[] args) {

Int reps = Integer.parselnt(argy 1]);

Int steps=0;

Int[] arr = new int[Integer.parselnt(argg 0])];

for (int 11=0; ii<arr.length; ii++)

arr[ii] = (int)(Math.random()* 10000);

for (int kk=0; kk<reps; kk++) {
int tgt = arr[(int)(Math.random()* arr.length)];
for (int jj=0; jj<arr.length; jj++) {

steps++;
It (arr[j]]==tgt)
break;
}
}
System.out.printin("reps="+reps+" steps="+stepst" average="+(stepsreps));

|mprove on search speed?

e Aslong asthelist isunordered thisis as good
as you can do

e But, suppose that the list Is ordered
e Set hi=length, |0=0
e mid=hi+lo/2
e |f value at mid == target STOP
e |f valueat mid > target set hi=mid+1
e |f value at mid < target set lo=mid-1
e Return to mid= step

e Each rep removes ¥z of the possibilities

Ordereed Search Program

public class OrSearch {
public static void main(String[] args) {
int reps = Integer.parselnt(args[1]);
int steps=0;
int[] arr = new int[Integer.parselnt(args[0])];
arr[O]=(int)(Math.random()* 10);
for (int ii=1; ii<arr.length; ii++)
arr[ii] = arr[ii-1]+1+(int)(Math.random()* 20);
for (int kk=0; kk<reps; kk++) {
int tgt = arr[(int)(Math.random()* arr.length)];
int hi=arr.length-1; int 10=0; int mid=hi/2;
steps++;
while (arr[mid] !'=tgt) {
steps++;
if (arr[mid]>tgt) hi=mid-1,;
if (arr[mid]<tgt) lo=mid+1;
mid=(lo+hi)/2;
13
System.out.printin("reps="+repst+" steps="+stepst+” average="+(stepsreps));
13

Comparisons needed for Search

Number of Elements Comparisons

10

100

1,000

10,000
100,000
1,000,000
10,000,000
100,000,000
1,000,000,000

Are the steps the same??

Efficiency

e How do we measure efficiency?
e Two main ways to determine efficiency:

M easurement

e Run aprogram on some input and time it

1 Extremely accurate.
s Easy to do.

J Not very good predicting value on
J Other inputs.
J Other computers.
J Can only be done after program is
written.

Analysis

e Examine a program to determine how long
It will take

e Choose aModel of Computation specifying
what the basic instructions are and how much
each one costs

e Write aprogram (or pseudo-code) using these
basic instructions

e Count to figure out running time

Main Model for This Course

Proposal.

e Basic operations are Java instructions.
e Cost of each basic operation is 1 step!

| s this reasonabl e? — some Java instructions
take much longer

We only want ballpark numbers

We want the analysis to hold on many
different machines

Running time analysis. Example

public static int f(int x) {

Int y = X * X;

y =y + X

return (y * x +3*y +3* x + 1);

}

How many steps are the above?

|00k at ther et ur n Instruction!

Examples with arrays and loops

public static void setToOnes (int[] a) {
for (1 =0; | <a.length; 1++) {a[i] = 1;}
}

public static int search (int[] a, int x) {
int 1 = 0;
while (i < a.length) {
1 f (x == a[i]) {return (i);}
| =1 +1;
return -1;

}

Basis of Time M easurement
Size of Input

e The number of elementsin an array

e A program might take different times on
different inputs of the same size

e Worst-case analysis focuses on inputs on
which a program take the longest time

Analyzing Java constructs

Int I;
for (i =1; i <10; i++) {
Systemout.print(i + “ “);

}

Nested for loops

int i,j;
for (i =0; i < 10; i++) {
for (j =0; j < 10; j++) {

Systemout.print((i+) + “

“);

Takes about
10 steps.

Takes about
10 *10 = 100
steps.

Tougher Example

public static void tsro (int[] a) {

int 1, j;
for (i=0; i < a.length; i++) {
for (j=i; J < a.length; j++) {

Lt (afi] >a[]]) {

[/ sonme code

e Theinner loop Is executed
a.length — | timesevery outer loop

Upper Bounds and Lower Bounds

UJpper bound — worst-case analysis — how
ong does it take, at most?

_ower bound — best-case analysis — how
ong does it take, ?

WORST e [°

BEST | > n°/4

Thisanalysisisapain... let’s be
sloppy

e Recall that we already decided to not count
Java s instructions precisely in our model of
computation!

e Rulesfor precise sloppiness.

e |tishow long aprogram takes on LARGE
Inputs that matters

e Constants do not matter. That Is, a program that
performs 5 n instructions is just as good as one
that performs n instructions.

Asymptotic notation

o Wetalk of running time as a fucntion of the
Input size:

* |f we havetwo programs, onetakesf(n)

and the other takesg (n), which oneis
better?

Big-O Notation

t(n) O(F(n))
e A way of denoting that fact that asn gets
arger f(n) eventually becomes
proportional to some function F(n)

* Theideaisthat f(n) isat least asgood as F
(n)

® F(n) isusually some standard function
whose complexity Is easy to see.

While Loops

public static int gcd (int x, int y) {
while (y !'= 0) {

| nt t(?rrp =Y How many times is
X = tenp; :
} i while loop executed?

return (Xx);

}

* The program executesin O(y) time

Examples

e Linear search: O(n)
 Binary search: O(log(n))
e Shuffling Cards ?7?

f(n;

30

25

20

15

10

Functions

NS

+n

— o log(n)

= nlog(n)

o A XN2

m >

o

v

— log(n)
Linearl

— Linear?

—n log(n)
n*2

[

150-

:

Time (seconds)

LA
=]

u_ ! | ! | ! | ! | ! |
0 20000000 40000000 60000000 30000000 100000000
N

