
Search
● Suppose have an array with 100 integers

● Unordered & unique
● How many will you have to look at to find a 

particular integer that is in the set
● Best case
● Worst case
● Average case



Unordered Search
public class UnSearch {
    public static void main(String[] args) {

int reps = Integer.parseInt(args[1]);
int steps=0;
int[] arr = new int[Integer.parseInt(args[0])];
for (int ii=0; ii<arr.length; ii++)
    arr[ii] = (int)(Math.random()*10000);
for (int kk=0; kk<reps; kk++) {

int tgt = arr[(int)(Math.random()*arr.length)];
for (int jj=0; jj<arr.length; jj++) {

steps++;
if (arr[jj]==tgt)
    break;

    }
    }

         System.out.println("reps="+reps+"   steps="+steps+"    average="+(steps/reps));
    }
}



Improve on search speed?
● As long as the list is unordered this is as good 

as you can do
● But, suppose that the list is ordered

● Set hi=length, lo=0
● mid=hi+lo/2
● If value at mid == target STOP
● If value at mid > target set hi=mid+1
● If value at mid < target set lo=mid-1
● Return to mid= step

● Each rep removes ½ of the possibilities



Ordereed Search Program

public class OrSearch {
    public static void main(String[] args) {

int reps = Integer.parseInt(args[1]);
int steps=0;
int[] arr = new int[Integer.parseInt(args[0])];
arr[0]=(int)(Math.random()*10);
for (int ii=1; ii<arr.length; ii++)
    arr[ii] = arr[ii-1]+1+(int)(Math.random()*20);
for (int kk=0; kk<reps; kk++) {

int tgt = arr[(int)(Math.random()*arr.length)];
int hi=arr.length-1;      int lo=0;        int mid=hi/2;
steps++;
while (arr[mid] !=tgt) {

steps++;
if (arr[mid]>tgt) hi=mid-1;
if (arr[mid]<tgt) lo=mid+1;
mid=(lo+hi)/2;

    }}
System.out.println("reps="+reps+"   steps="+steps+"    average="+(steps/reps));

    }}



Comparisons needed for Search

1,000,000,000

100,000,000

10,000,000

1,000,000

100,000

10,000

1,000

100

10

Comparisons Number of Elements

Are the steps the same??



Efficiency

● How do we measure efficiency?
● Two main ways to determine efficiency:

● Em pirica l (m easure  t im e t aken by 
running program )

● Analyt ica l (analyze  t he  running t im e 
t heoret ica lly)



Measurement

↑ Ext rem ely accurat e .  
↑ Easy t o do.

↓ Not  very good predict ing va lue  on
↓ Ot her input s.
↓ Ot her com put ers. 

↓ Can only be  done aft er program  is 
w rit t en.

● Run a program on some input and time it



● Examine a program to determine how long 
it will take
● Choose a Model of Computation specifying 

what the basic instructions are and how much 
each one costs

● Write a program (or pseudo-code) using these 
basic instructions

● Count to figure out running time

Analysis



Main Model for This Course

•  Basic operat ions are  Java inst ruct ions.
•  Cost  of  each basic operat ion is 1  st ep!

● Proposal:

● Is this reasonable? – some Java instructions 
take much longer

● We only want ballpark numbers
● We want the analysis to hold on many 

different machines



Running time analysis: Example

 public static int f(int x) {
   int y = x * x;
   y = y + x;
   return (y * x + 3 * y + 3 * x + 1);
 }

● How many steps are the above?

● Look at the return instruction!



Examples with arrays and loops

public static void setToOnes (int[] a) {
  for (i = 0; i < a.length; i++) {a[i] = 1;}
}

public static int search (int[] a, int x) {
  int i = 0;
  while (i < a.length) {
    if (x == a[i]) {return (i);}
    i = i+1;
  return -1;
}



Basis of Time Measurement 
Size of Input

● The number of elements in an array
● A program might take different times on 

different inputs of the same size
● Worst-case analysis focuses on inputs on 

which a program take the longest time



Analyzing Java constructs

int i;
for (i = 1; i < 10; i++) {
  System.out.print(i + “ “); }

Takes  about
1 0  st eps.

Takes about
1 0  *  1 0  =  1 0 0
st eps.

int i,j;
for (i = 0; i < 10; i++) {
  for (j = 0; j < 10; j++) {
    System.out.print((i+j) + “ “); }

  Nest ed for loops



public static void tsro (int[] a) {
  int i, j;
  for (i=0; i < a.length; i++) {     // Outer loop
    for (j=i; j < a.length; j++) { // Inner loop
      if (a[i] > a[j]) {
        // some code
    }
  }
}

Tougher Example

● The inner loop is executed 
a.length – i times every outer loop



● Upper bound – worst-case analysis – how 
long does it take, at most?

● Lower bound – best-case analysis – how 
long does it take, at least?

Upper Bounds and Lower Bounds

2n
4/2n

WORST

BEST



This analysis is a pain... let’s be 
sloppy

● Recall that we already decided to not count 
Java’s instructions precisely in our model of 
computation! 

● Rules for precise sloppiness:
● It is how long a program takes on LARGE 

inputs that matters
● Constants do not matter. That is, a program that 

performs 5n  instructions is just as good as one 

that performs n  instructions.



● We talk of running time as a fucntion of the 
input size:

● If we have two programs, one takes f (n)  

and the other takes g(n) , which one is 
better?

Asymptotic notation

“ a program  t akes (at  m ost )  f(n) 
t im e”



Big-O Notation  

● A way of  denoting that fact that as n  gets 

larger f (n)  eventually becomes 

proportional to some function F(n)
● The idea is that f (n)  is at least as good as F

(n)
F(n)  is usually some standard function 
whose complexity is easy to see.

))(()( nFOnf



While Loops

public static int gcd (int x, int y) {
  while (y != 0) {
    int temp = y;
    y = x%y;
    x = temp;
  }
  return (x);
}

How many times is 
the
while loop executed?

● The program executes in O(y)  time



Examples

● Linear search: O(n)
● Binary search: O(log(n))
●  Shuffling Cards ??



Functions

0

5

10

15

20

25

30

0 2 4 6

n

f(
n

)

n

log(n)

n log(n)

x^2




