Graphs and Algorithms

e Graphs are a mathematical concept readily

adapted 1into computer programming.

* Graphs are not just data structures, that 1s,
they are not solutions to simple data storage

problems.

* Graphs are usually used because of the

algorithms associated with them.

Apr 19 -- 1



Introduction to Graphs

Graphs are rather like trees.

From a math perspective, a tree 1s a graph,

but there are many graphs that are not trees.

From a programming perspective, graphs

are used differently from trees.

Usually used to represent data that has a

physical existence.

Apr 19 -- 2



Definitions

A graph consists of vertices and edges.

Two nodes are said to be adjacent 1f they

are connected by a single edge.
A path 1s a sequence of edges.

A graph 1s said to be connected 1f there 1s at
least on path from every vertex to every

other.
Apr 19 -- 3



Directed and Weighted Graphs

* These are graphs produced from basic

graphs by introducing edge variations.

* Directed graphs add directions to the edges,
that 1s, one can only travel one way along

the edges.
* Weighted graphs add weights to the edges,

often to represent physical distances

between the vertices. Apr 19 - 4



The Seven Bridges of
Koenigsberg

* The 1s the first well known application of

the graphs.
* Leonhard Euler, in the early 1700s.

o i 'wm-‘..cﬁa o ot
J;‘jﬂ-‘.ﬁ&lﬁ{wi- ‘:‘:«t"%i-?‘;%‘j' i .--'r;t_'-g.;;;* :
SR e O v o

g8 S
A e o w1 i

N

Apr 19 --5



Representing Graphs 1n a

Program

e Unlike trees, whose data 1s only stored at
the nodes (vertices), a graph can store data

both at the vertices and at the edges.

* Also unlike binary trees, a graph may have

any number of adjacent vertices.

Apr 19 -- 6



Vertices

* The class usually stores an object
representing all pertinent data of the

physical object.

* Also often stores a tflag/counter used by
searching/traversing algorithms.
* All vertices are usually placed in arrays, and

referred to using their index number.

Apr 19 --7



Vertex class

class Vertex {
public City c;
public char label;
public boolean visited;

public Vertex (City new, char 1) {
C = new;
label = 1;
visited = false;
}
}

Apr 19 -- 8




Edges

* The solution to the freeform connections in
graphs 1s to use either an adjacent matrix or

an adjacent list.

* An adjacent matrix 1s a two dimensional
array in which the elements indicate
whether an edge 1s present between tow

vertices.

Apr 19 --9



The Adjacent Matrix

* If a graph has n vertices, the adjacent matrix

will be of size nxn.

* The existence of an edge 1s indicated by a 1,

and (-otherwase-
A B C D
A 0 1 1 1
B 1 0 0 1
C 1 0 0 0
D 1 1 0 0

Apr 19 -- 10




The Adjacency List

e Use a linked list to indicate all the vertices

adjacent to a particular vertex.

* Need one linked list per vertex.

vertex | Adjacency List
A BCD

B AD

C A

D AB

Apr 19 -- 11




Adding Vertices and Edges to a
Graph

e For each vertex:

* make a new vertex object and 1nsert 1t into the

vertex array vertexList.

vertexList[n++] = new Vertex (NewYork, ‘F’);

* Add all edges connecting to the new vertex into

the adjacency matrix or list.
adjMat [1] [n-1] = 1; adjMat[n-1][1l] = 1;
lists[n-1] .append(l); lists[1l].append(n-1);

Apr 19 -- 12



Searches

* Finding which vertices can be reached from
a specified vertex.

* One of the most fundatmental operations on
a graph.

* An algorithm which starts at any specified
vertex, systematically moves along edges to
other vertices such that when 1t’s done, you

are guaranteed to have visited every
connected vertex. Apr 19 -- 13



Depth-First Search

* As the name suggests, the algorithm will try
to go down (to an adjacent vertex) for as far

as possible, and then back track.

* This 1s especially obvious when the graph 1s
indeed a tree (which then has a clear up-

down relationship between the vertices).

e It is implemented using a stack to remember

where 1t was when a dead-end 1s reacRgdio - 14



Example

What is the depth first traversal order

®
B C O

¢ e o
o e @>

Apr 19 -- 15



The DFS Algorithm

If possible, visit an adjacent unvisited

vertex, mark 1t, then push it onto the stack.

If you can’t follow rule 1, then 1f possible,

pop a vertex off the stack.

If you can’t follow rule 1 or rule 2, you

are done.

Apr 19 -- 16



Breadth-First Search

Instead of trying to get as far away from the
start point, we can also try to stay as close
as possible.

In tree terminology, we want to visit all
nodes level by level.

BEFS for the previous example??

BFS is implemented with a queue.

Apr 19 --

17



The BEFS Algorithm

Make start vertex current vertex, visit it.

If possible, visit the next unvisited vertex
that 1s adjacent to the current one, mark it

and 1nsert it into the queue.

If you can’t carry out rule 1, remove a
vertex from the queue and make it the

current vertex.

If you can’t carry out rule 1 or 2, YOt e
Apr 19 -- 18

Anne



Classic Graph Problems
* The 7 bridges of Koenigsberg Problem

* Is there a path by which I can cross every bridge

exactly once?

* More generally, given a graph 1s there a path on

on which I can traverse every EDGE once

* Also, 1s there a path on which I can visit every

vertex once

* Traveling Salesman problem

* Given a graph with weighted edges, whatasthe
nath with minimum weicht that visits evefpr 19 -- 19



Brute Force vs Analytic Solutions

e Every solvable graph theory problem has a

“brute force” solution

* Problem, brute force could take a long time

e TSP with 100 fully connected cities srequires

considering about 2'* paths

* http://www.tsp.gatech.edu/cpapp/index.html

* Sometimes there are anlaytic soltions

* 7 bridges of Koenigsberg Problem

* Theorem: If a network has more than two odd vertices, it does
not have an Euler path. Also, Theorem: If a network has two or

less odd vertices, it has at least one Euler path.A vertex 1s odd if



