
Apr 14 -- 1

QuickSort – one last tine

● like MergeSort is divide and Conquer
● so like MergeSort is O(n log(n))

● but analysis is far more complex because much
depends on good pivot selection

● “Really worst case” analysis
● What is the worst possible pivot selection?
● if you always choose the worst pivot how long

does QuickSort take?

Apr 14 -- 2

Priory Queue -- recall
● A priority queue is a data structure that

offers convenient access to the data item
with the smallest (or largest) key.

● Implemented with with linked list or
ordered array:
● Search/Deletion O(1)

● go to the first item

● Insertion O(n)

● Alternative implementations?

Apr 14 -- 3

Heaps – a priority implementation

● A heap is a binary tree.
● Insertion and deletion are both log(n).
● It is the method of choice for implementing

priority queues when speed is important and
there are many insertions.

Apr 14 -- 4

Heap Characteristics

● A heap is a binary tree with these criteria:
● It is complete – although the last row need not

be full
● It is (usually) implemented with an array.
● Each node in a heap satisfies the heap condition,

which states that every node’s key is larger than
or equal to the keys of its children.

Apr 14 -- 5

Representing a Binary Tree with
Arrays

● So far we used references to find a node’s
left and right children.

● In the array approach, the nodes are stored
in an array, and are not linked.

● The position of the node in the array
corresponds to its position in the tree.

● The node at index 0 is the root, index 1 is
the root’s left child and so on, progressing
from left to right for every level of the tree.

Apr 14 -- 6

Heap as Array
if a node is stored at index n
● its left child is at 2*n+1
● its right child is at 2*n+2
● its parent is at (n-1)/2

60
50
70
20
10
40
55
4511

10

30
80
90
1000

1
2

4
3

5
6
7
8
9

1
0
0

9
0

8
0

7
0

3
0

5
0

6
0

2
0

1
0

4
0

5
5

4
5

Apr 14 -- 7

Weakly Ordered

● A binary tree has a stronger ordering than
the heap, that is, there’s ordering among
siblings as well as between parents and
children.

● Thus traversing heap nodes in order is
difficult.

● Also can not search for a specific key.

Apr 14 -- 8

Heap Ordering and Priority
Queue

● Recall that we wanted the heap to simulate
the priority queue.

● The weaker ordering of the heap, however,
is just enough to allow the quick removal of
a maximum node as well as quick insertion.

● The node with the max key is always the
root in a heap.

Apr 14 -- 9

Deletion

maxNode = heapArray[0];

● Now we must fill the hole that is the root.
● Move the last node in the array to the root

heapArray[0] = heapArray[--N];

● Trickle (swap) the node down until it’s below a
larger node and above a smaller one.

● compare the node with the larger of its children
● swap if smaller

Apr 14 -- 10

Insertion

● Insertion calls for trickling up instead of
down.
● Insert the node as the last item in the array.

heapArray[N++] = newNode;

● Compare node with parent.
● Swap if bigger.

Apr 14 -- 11

Heapsort

● Even though it is very difficult to traverse the heap
in order, there is a simple way to sort the items
using a heap.

● Insert items into the a heap normally.
● Repeated deletion of all items will then remove

them in order!
for(i=0; i<size; i++)
 theHeap.insert(myArray[i]);
for(i=0; i<size; i++)
 myArrray[i] = theHeap.delete();

Apr 14 -- 12

Heapsort Efficiency

● Insertion and deletion are both log(n).
● They are each applied n times.
● Efficiency of heapsort is therefore 2*n*log

(n), which is O(nlog(n)).
● However, even though it is rated the same

as quicksort, it is slower because of the
trickling that happens in the inner loop.

● Also uses more memory.

