Quick Sort

o Undoubtedly the most popular sorting
algorithm.

e O(nlog(n)).
e Arrays

o faster than mergesort

e Does not reguire as much space as merge sort.

o Recall that merge sort requires twice as much space as
original array to store temporary sub arrays.

e Linked Lists

e Merge sort better — cannot play the games that make
quicksort fast on linked lists

pr12--

Partitioning

e Divide datainto two groups, such that all
items with a key value higher than a
specified amount will be in one group, and
the ones with lower key value in the other.

e Important: the items in each group are NOT
sorted.

e Thethreshold value used to determine
which group an item belongs is called the
“pivot value”.

Yo

Partitioning Algorithm

Starts with two indices, | and r , each will be
moving towards each other.

Advance the left index through the array until the
first element larger than the pivot is encountered.

Similarly advance the right index until the first
element smaller than pivot is found.

Swap the elements pointed to by left and right
Indices — thus they end up on the right side.

Stop when two indices meet or cross each other.

Apr12--3

Example

o If array looks like this:
/ 12 2,5,89,0,7,19, 25, 67, 49, 88, 59
e Partition with pivot value 50:

12, 2, 5, 89, 0, 7, 19, 25, 67, 49, 88, 59
\ \
. 3

—) //

. ﬁ.\% | <\% :
e First swap (89, 49)

12,2, 5,49, 0, 7, 19, 25, 6/, 89, 88, 59

N\
”///<;¢
1 F

pd
(

N

Partitioning

md = (|+r)/2;
pivot = theArray[md];
while(| <= hi) {
while((l<hi0) && (theArray[l]<pivot))

| ++;
while((r>l00)&& (theArray[r]>pivot))
r--;
1f(l <=r) {
swap(l, r);
| ++;
R
}

Quicksort

e Partition the array into two subarrays
according to some pivot value.

o Call itself recursively on each subarray.

o Somewhat like merge sort, except that there
IS N0 merge, as partitioning guarantees that
left sSide Is smaller than right side.

recQsort

public void sort(int left, int right) {
1 f (right-left<=0) //size 1, already sorted
return;
[/ partition
sort(l, md-1);
sort(md+1, r);

pr12--

How to Choose a Pivot?

The pivot should be the key value of an
actual data item.

The choice can be more or less random.
et us always pick the last element.

After partition, if the pivot isinserted
between left and right partitions, it will be at
Its correct location.

Bad pivot choice can result in O(n°) time
Apriz--8

Putting It together

o Make partition a method

e problem partition returns two values
e new |o and new hi

e Create aclass tht holds these values
» only needed inside the QuickSort class

» Javaallows such things

e public class QuickSort {
private class Parter {

e the private class exists ONLY within the public class

pr

Stable and Unstable Sorting

e Stable
e elements with equal keys retain order

e Unstable
o order of elements with equal keysis arbitrary

e When do you care?

o Insterion, Selection, Bubble, Merge, Quick
e which are they?

T

Quicksort example applets

e http://java.sun.com/applets/jdk/1.0/demo/Sor
tDemo/examplel.htmi

o http://mainline.brynmawr.edu/Courses/cs206
[fall 2004/W orkshopA pplets/Chap07/QuickS
ortl/QuickSort1.html

