
Apr 12 -- 1

Quick Sort
● Undoubtedly the most popular sorting

algorithm.
● O(nlog(n)).

● Arrays
● faster than mergesort
● Does not require as much space as merge sort.

● Recall that merge sort requires twice as much space as
original array to store temporary sub arrays.

● Linked Lists
● Merge sort better – cannot play the games that make

quicksort fast on linked lists

Apr 12 -- 2

Partitioning

● Divide data into two groups, such that all
items with a key value higher than a
specified amount will be in one group, and
the ones with lower key value in the other.

● Important: the items in each group are NOT
sorted.

● The threshold value used to determine
which group an item belongs is called the
“pivot value”.

Apr 12 -- 3

Partitioning Algorithm

● Starts with two indices, l and r, each will be
moving towards each other.

● Advance the left index through the array until the
first element larger than the pivot is encountered.

● Similarly advance the right index until the first
element smaller than pivot is found.

● Swap the elements pointed to by left and right
indices – thus they end up on the right side.

● Stop when two indices meet or cross each other.

Apr 12 -- 4

● If array looks like this:

12, 2, 5, 89, 0, 7, 19, 25, 67, 49, 88, 59

● Partition with pivot value 50:

12, 2, 5, 89, 0, 7, 19, 25, 67, 49, 88, 59

● First swap (89, 49)

12, 2, 5, 49, 0, 7, 19, 25, 67, 89, 88, 59

Example

l

l r

R

l R

Apr 12 -- 5

Partitioning
mid = (l+r)/2;

pivot = theArray[mid];

while(l <= hi) {

 while((l<hi0) && (theArray[l]<pivot))

 l++;

 while((r>lo0)&& (theArray[r]>pivot))

 r--;

 if(l <= r) {

 swap(l, r);

 l++;
 r--;

 }

}

Apr 12 -- 6

Quicksort

● Partition the array into two subarrays
according to some pivot value.

● Call itself recursively on each subarray.
● Somewhat like merge sort, except that there

is no merge, as partitioning guarantees that
left side is smaller than right side.

Apr 12 -- 7

recQsort

public void sort(int left, int right) {

 if (right-left<=0) //size 1, already sorted

 return;

 //partition

 sort(l, mid-1);

 sort(mid+1, r);

}

Apr 12 -- 8

How to Choose a Pivot?

● The pivot should be the key value of an
actual data item.

● The choice can be more or less random.
● Let us always pick the last element.
● After partition, if the pivot is inserted

between left and right partitions, it will be at
its correct location.

● Bad pivot choice can result in O(n2) time

Apr 12 -- 9

Putting it together
● Make partition a method

● problem partition returns two values
● new lo and new hi

● Create a class tht holds these values
● only needed inside the QuickSort class
● Java allows such things

● public class QuickSort {
 private class Parter {

● the private class exists ONLY within the public class

Apr 12 -- 10

Stable and Unstable Sorting

● Stable
● elements with equal keys retain order

● Unstable
● order of elements with equal keys is arbitrary

● When do you care?
● Insterion, Selection, Bubble, Merge, Quick

● which are they?

Apr 12 -- 11

Quicksort example applets

● http://java.sun.com/applets/jdk/1.0/demo/Sor
tDemo/example1.html

● http://mainline.brynmawr.edu/Courses/cs206
/fall2004/WorkshopApplets/Chap07/QuickS
ort1/QuickSort1.html

