Hashtables

Working around Collisions
* Open addressing

e Recall that we allocate an array twice the size

of the number of words

e [f “cats’ hashes to 5421, and that location 1s
already occupied, hash “cats’ to 5422.

* Separate chaining
e Have each cell store a linked list of words

* Every word hashes to an index will be inserted

into the list April 7 -- 1



find

public Object find(String key) {
int hval = hashfun(key);
while (hashArray[hval] [0] !=null) {
if(((String)hashArray[hval] [0]) .equals(key))
return hashArray[hval][1]; //yes!
else {
hval++;
if (hval==hashArray.length)
hval=0;
}
}

return null;

April 7 -- 2



insert

private void insertLP (String key,
Object wvalue) {
int hval = hashfun(key);
while (hashArray[hval] [0] !=null &&
! ((String)hashArray) .equals (emkey))
{
hval++;
if (hval==hashArray.length)
hval=0;
}
hashArray[hval] [0]=key;
hashArray[hval] [1]=value;

April 7 -- §



Clustering

* A Clustering 1s a chain of data items stored
out of their hashed locations due to

collisions.

* As the table gets full, clustering become
larger, which can result in very long probe

lengths.

* Performance degenerates seriously when the
array 1s more than 2/3 full, but best KeCar-———



Quadratic Probing
* IDEA — To reduce clustering, do not search

sequentially.

* Probe more widely separated cells, that 1s, at each step,
increment the index by the square of the step:
e instead of: x+1, x+2, x+3...

e use: x+1, x+4, x+9...

* Secodary Clustering

* Quadratic probing eliminates the kind of clustering we

saw before, known as primary clustering.

* All keys hashed to a specific index follow the same

sequence looking for a vacant cell. April 7 -- 5



Unique Probing Sequence

* Secondary clustering forms because the

probe sequence 1s always the same: 1, 4, 9,
16 ...

* What we want 1s a different sequence for

every key.
* Make the probing dependent on the key,

which 1s unique by design.

April 7 --



Double Hashing

* The 1dea 1s to hash the key a second time,
using a different hash function, then use the
result as a step size.

* Secondary hash function must:
* not be the same as the primary
* never output a O (there will be no step)
* Function that has worked well:
e step = constant—-(key%constant)

. Array size 1s prime and constant 1S SMalieksbhaitm—
April 7 --7

. e e o~ - — —



Double Hashing: insert

private void insertDH(String key, Object
value) {
int hval = hashfun(key);
int step=hashfun2 (key);
while (hashArray[hval] [0] !=null && !
((String)hashArray[hval] [0]) .equals
(EMKEY) ) {

hval+= step;

if (hval==hashArray.length)

hval-=hashArray.length;

}
hashArray[hval] [0]=key;
hashArray[hval] [1l]=value; }

April 7 -- 8




Double Hashing -- Why Prime?

* Suppose we have a table size of 15.

* A particular item hashes to initial index of
0, and step size of 5.
°0,5,10,0,5 ...
* Only checks 3 cells!
* Change array size to 13
° 0,5,10,2,7,12,4,9,1,6, 11,3, 8

o All cells are checked. April 7 -- 9



Separate Chaining

Recall that linked lists are used to queue up

data items that hash to the same index.

The hash table 1n fact turns into an array of
linked lists.

Conceptually simpler, also allows for

duplicate data items.

Must include linked list in implementation.

April 7 -- 10



Hash Functions

* Quick computation — avoid too many

multiplications and divisions

* (Good distribution of hashed i1tems —
collision avoidance
* random keys — mod 1s good enough
* non-random keys, 1.e. license plate numbers —

data dependent

e Use a prime number for mod base
P April 7 -- 11




Hashing Efficiency

e [f no collision, insertion and search

approach O(1).

* If collisions occur, access time depends on

probe lengths.

* Average probe length depends on the load
factor (how full the table 1s).

April 7 -- 12



Open Addressing

o | et:
e | =]oad factor

* P = number of probes

* Linear Probing: L = Load factor
* successful: P=(1+1/(1-L))/2
e unsuccessful: p= (1 + 1/(1-L)*) /2

* (Quadratic and Double Hashing:
o successful: P = —logz(l—L)fL
* unsuccessful: P=1/(1-L)

April 7 -- 13



Separate Chaining

* Searching
e successful: P=1+1L/2

e unsuccessful: P = 1+L or P=1+L/2

e Insertion:

e unordered: P=1

e ordered: P=1+L./2

April 7 -- 14



