
 April 5 -- 1

Hash Tables
 Too Good to be True?

● Constant time for insertion and searching,
regardless of how many data items.

● Search/Insertion
● arrays – O (n)/O(n)
● linked lists – O (n)/ O(n) or O(1)
● trees – O(log(n)) / O(log(n))
● hash tables – O(1)/O(1)

 April 5 -- 2

The Problems

● Must have a good idea ahead of time how
many data items there will be.
● hash tables will not be O(1) if too full
● moving to a larger hash table is VERY costly

● O(1) yes -- but constant term may be large
● No convenient way to visit the data items in

order (any order)
● must do something else

 April 5 -- 3

The Idea of Hashing

● Hash tables are based on arrays.
● The idea is to establish a correspondence

between a data key value and some array
index.

● By looking at the data, we can quickly find
out where to store it (insertion), or where it
is stored (search).

 April 5 -- 4

Simple Case
● When data keys are well organized.
● Consider a company who stores its employee data

in a database.
● Each employee is assigned an ID.
● IDs run sequentially from 0.

● Hashing is very simple, just use the ID as the
array index
Person[] empData = new Person[total];

empData[newRecord.id] = newRecord;

BUT – suppose that you do not know the id – how do you
get it?

 April 5 -- 5

A Dictionary

● Store a 50,000-word dictionary in memory.
● No symbols and all lower case letters.
● What is the index for “cat”?
● Let’s first assign integers to the letters.

● a: 1, b: 2 … z: 26, blank: 27

● How about adding them up and using the
sum?

 April 5 -- 6

Multiplying by Powers
● Letters ~ digits – words ~ numbers
● “cat” = 'c' + 'a'*26 + 't' *26*26
● java: Object.hashCode() uses 31 not 26

● the number rapidly gets too big to be an int
● Generates unique index for each word.
● Generates index for words that do not exist.

● So lots of wasted space even assuming want to store
all english words

● Max word len
● 3 ==> 17576 indices, 4==>30336176 indices
● assuming only lower case letters

012
27''27''27'' ∗+∗+∗ tac

 April 5 -- 7

Hashing
● We need to compress the huge range of

numbers into what is reasonable.
● A simple approach is to use the modulus

operator.
● The remainder is guaranteed to be in the

range of the mod operand.
arraySize = numWords * 2;

index = hugeNumber % arraySize;

 April 5 -- 8

Hashing – “good” hugeNumbers
● Additive

● Let p be an array of prime numbers
● long hash=0; int j=0

for (int i=0; i<item.length(); i++) {
 hash = p[j++] * item.getChar(i);
 if (j==p.length) j=0; }

● Rotative
● do some “bit shifting” after each letter

● int hash = 5381;
 for(int i = 0; i < item.length(); i++)
 hash = ((hash/32) + hash) + item.charAt(i);

● Java: hash/32 == hash<<5 but hash<<5 is much faster

 April 5 -- 9

Collisions

● The price we pay is that we can no longer
guarantee that all words get unique keys.

● If two data items hash to the same index, it
is known as a collision.

● Collisions are largely unavoidable.
● Pick a good hashing function so that collisions

are less frequent
● Work around it when it does happen

 April 5 -- 10

Working around Collisions

● Open addressing
● Recall that we allocate an array twice the size

of the number of words
● If “cats” hashes to 5421, and that location is

already occupied, hash “cats” to 5422.

● Separate chaining
● Have each cell store a linked list of words
● Every word hashes to an index will be inserted

into the list

 April 5 -- 11

Linear Probing
on Open Addressing

● Search sequentially for next vacant cell.
● 5421 is occupied, try 5422, 5423, and so on.
● Insertion will attempt to insert at hashed

index, if occupied, keep incrementing index
and insert at first vacant cell.

● Find does the same, except that if a vacant
cell is encountered during the probing before
a match is found, report failure.

 April 5 -- 12

Deletion
under Open Addressing

● Deletion usually requires a way to mark a
data item as deleted, but not simply vacating
the cell.

● Recall the find method will report failure if
a vacant cell is encountered before a match.
Thus giving up prematurely.

● Instead mark the item off, such as by setting
value to –1.

● Often simply not allowed.

 April 5 -- 13

find

public DataItem find(int key) {
 int hval = hashFunc(key);

 while(hashArray[hval]!=null){
 if(hashArray[hval].getKey()==key){
 return hashArray[hval]; //yes!
 else {
 hashval++;
 if (hashval==arraySize)
 hashval=0;

 }
 }
 return null;
}

 April 5 -- 14

insert

public void insert(DataItem d) {
 int hval = hashFunc(d.getKey());

 while((hashArray[hval]!=null) &&
(hashArray[hval].getKey()!=-1)) {

 hashval++;
 if (hashval==arraySize)
 hashval=0;

 }
 hashArray[hval] = d;
 return;
}

 April 5 -- 15

Clustering

● A Clustering is a chain of data items stored
out of their hashed locations due to collisions.

● As the table gets full, clustering become
larger, which can result in very long probe
lengths.

● Performance degenerates seriously when the
array is more than 2/3 full, but best kept at
1/2 full (less wastes a lot of space).

 April 5 -- 16

Quadratic Probing
● IDEA – To reduce clustering, do not search

sequentially.
● Probe more widely separated cells, that is, at each step,

increment the index by the square of the step:
● instead of: x+1, x+2, x+3…
● use: x+1, x+4, x+9…

● Secodary Clustering
● Quadratic probing eliminates the kind of clustering we

saw before, known as primary clustering.
● All keys hashed to a specific index follow the same

sequence looking for a vacant cell.
● Not as serious and it is solvable! How?

