Hash Tables
Too Good to be True?

e Constant time for insertion and searching,
regardless of how many data items.

e Search/Insertion
e arrays— O (n)/O(n)
e linked lists— O (n)/ O(n) or O(1)
e trees— O(log(n)) / O(log(n))
e hash tables— O(1)/O(1)

April 5--1

The Problems

e Must have agood idea ahead of time how
many data items there will be.

 hash tables will not be O(1) if too full
e moving to alarger hash table iIsVERY costly

e O(1) yes-- but constant term may be large

e NO convenient way to visit the dataitemsin
order (any order)

e must do something else

April 5-- 2

The Idea of Hashing

e Hash tables are based on arrays.

e Theideaisto establish a correspondence
between a data key value and some array
Index.

e By looking at the data, we can quickly find
out where to store it (Iinsertion), or where it
IS stored (search).

April 5--3

Simple Case
 When data keys are well organized.
o Consider acompany who stores its employee data
IN a database.

e Each employeeisassigned an ID.
e IDsrun sequentialy from O.

e Hashingisvery simple, just usethe ID asthe
array index
Person[] enpData = new Person[total];
enpDat a[newRecord. 1 d] = newRecord,;

BUT - suppose that you do not know the id — how do you
get it?

April 5--4

A Dictionary

Store a 50,000-word dictionary in memory.
No symbols and all lower case letters.
What isthe index for “cat”?

Let’sfirst assign integers to the letters.
e al b 2...z 26, blank: 27

How about adding them up and using the
sum?

April 5--5

Multiplying by Powers
o Letters~ digits—words ~ numbers
e “Ca” ='C'+'a*26 +'t' *26*26
o Java Object.hashCode() uses 31 not 26
e the number rapidly getstoo big to be an int
o Generates unigue index for each word.
o Generatesindex for words that do not exist.

e S0 lots of wasted space even assuming want to store
all english words

e Max word len
e 3==> 17576 indices, 4==>30336176 indices
e assuming only lower case letters

April 5-- 6

Hashing
e We need to compress the huge range of
numbers into what is reasonable.

e A simple approach isto use the modulus
operator.

e Theremainder Is guaranteed to bein the
range of the mod operand.
arraySi ze = nunWrds * 2;
| ndex = hugeNunber % arraySi ze;

April 5--7

Hashing — “good” hugeNumbers

e Additive

e Let pbean array of prime numbers
e long hash=0; int =0
for (int i=0; i<item.length(); i++) {
hash = p[j++] * item.getChar(i);
If (j==p.length) |=0; }

e Rotative
e do some “hit shifting” after each letter
e Int hash = 5381,

for(inti =0; 1 <item.length(); 1++)
hash = ((hash/32) + hash) + item.charAt(i);
e Java: hash/32 == hash<<5 but hash<<5 is much faster

April 5--8

Collisions

e The price we pay Isthat we can no longer
guarantee that all words get unique keys.

e |f two data items hash to the same index, it
IS known as a collision.

e Collisons are largely unavoidable.

e Pick agood hashing function so that collisions
are less frequent

e Work around it when it does happen

April 5--9

Working around Collisions

e Open addressing

e Recall that we allocate an array twice the size
of the number of words

e |f “cats’ hashesto 5421, and that location IS
already occupied, hash “cats’ to 5422.

e Separate chaining
e Have each cell store alinked list of words

e Every word hashes to an index will be inserted
Into the list

April 5--10

Linear Probing
on Open Addressing

Search sequentially for next vacant cell.
5421 1s occupied, try 5422, 5423, and so on.

Insertion will attempt to insert at hashed
iIndex, If occupied, keep incrementing index
and insert at first vacant cell.

Find does the same, except that If a vacant
cell Is encountered during the probing before
amatch isfound, report failure.

April 5--11

Deletion
under Open Addressing

e Deletion usually requires away to mark a
data item as deleted, but not simply vacating
the cell.

e Recall the find method will report fallure if
avacant cell is encountered before a match.
Thus giving up prematurely.

e |Instead mark the item off, such as by setting
valueto —1.

e Often smply not allowed.

April 5--12

f1nd

public Dataltem find(int key) {
I nt hval = hashFunc(key);

whi | e(hashArray[hval]! =nul I'){

| f (hashArray[hval]. get Key() ==key) {
return hashArray[hval]; //yes!

el se {
hashval ++;
| f (hashval ==arraySi ze)
hashval =0;
}
}

return null;

}

April 5 -- 15@

| nNsert

public void insert(Dataltemd) {
I nt hval = hashFunc(d. getKey());

whi | e((hashArray[hval]!'=null) &&
(hashArray|[hval] . getKey()!=-1)) {

hashval ++:
| f (hashval ==arraySi ze)
hashval =0:;:
]
hashArray[hval] = d;
ret urn:

}

April 5-- 14

Clustering

e A Clustering isachain of data items stored
out of thalir hashed |ocations due to collisions.

o Asthetable getsfull, clustering become

arger, which can result in very long probe
engths.

e Performance degenerates seriously when the
array 1s more than 2/3 full, but best kept at
1/2 full (less wastes alot of space).

April 5--15

Quadratic Probing

e IDEA — To reduce clustering, do not search
sequentially.
e Probe more widely separated cells, that is, at each step,
Increment the index by the sguare of the step:

e INstead of: x+1, x+2, x+3...
e Use: X+1, Xx+4, x+9...

o Secodary Clustering

e Quadratic probing eliminates the kind of clustering we
saw before, known as primary clustering.

o All keys hashed to a specific index follow the same
seguence looking for a vacant cell.

e Not as serious and 1t issolvablel How?
April 5-- 16

