
1 Mar 31

Traversing the Tree

● Visiting each node in a specific order.
● Recursive methods are most commonly

used to traverse a tree.
● Traversal orders

● preorder
● inorder
● postorder

2 Mar 31

Inorder Traversal

● The aforementioned orders really refers to
the order of the recursive call.

● Inorder:
● call itself to traverse the left subtree
● visit the current node
● call itself to traverse the right subtree
● Visiting means doing something to a node,

simplest is to print it out.

3 Mar 31

inOrder

public void inOrder(Node current) {
 if (current == null)
 return;
 inOrder(current.left);
 current.printNode();
 inorder(current.right);
}

4 Mar 31

Preorder and Postorder

● Preorder
● visit the node
● call itself on left subtree
● call itself on right subtree

● Postorder
● call itself on left subtree
● call itself on right subtree
● visit the node

5 Mar 31

Deleting a Node

● Deletion is the most complicated operation
on a BST.

● The tree may need to be reorganized.
● Cases:

● Node to be deleted is a leaf
● Node to be deleted has one child
● Node to be deleted has two children

● First step, find the node to be deleted and its
parent

6 Mar 31

Leaf
if (current.getLeft()==null &&
 current.getRight() == null)

 {
// deleting a leaf
if (current==root)
 root = null;
else {
 if (parent.getLeft()==current)

parent.setLeft(null);
 else

parent.setRight(null);
}

 }

7 Mar 31

One Child
else if (current.getLeft() == null) {
 // only has a right left
 if (current==root)

root = current.getRight();
 else if (current==parent.getLeft())

parent.setLeft(current.getRight());
 else

parent.setRight(current.getRight());
}
else if (current.getRight() == null) {
 // only has a left left
 if (current==root)

root = current.getLeft();
 else if (current==parent.getLeft())

parent.setLeft(current.getLeft());
 else

parent.setRight(current.getLeft());
}

8 Mar 31

Two Children

● Can not simply replace with one child.
● Must replace with smallest of the right subtree

80

25

15

20 4030

35

5

9 Mar 31

The Inorder Successor

● Replace the node with its inorder successor.
● To find inorder successor

● Go to the right child
● Keep going down to the last left child
● If right child has no left child, then right child

10 Mar 31

getAndDelSuccessor
 private TreeNode getAndDelSuccessor(TreeNode delNode) {

TreeNode successorParent = delNodem successor = delNode;
TreeNode current = delNode.getRight();
while (current != null) {
 successorParent = successor;
 successor = current;
 current = current.getLeft();
}
if (successor.getRight()==null && successor.getLeft()==null){

if (successorParent.getLeft()==successor)
 successorParent.setLeft(null);
else
 successorParent.setRight(null);
return successor;

 }
if (successor != delNode.getRight()) {

successorParent.setLeft(successor.getRight());
successor.setRight(delNode.getRight());

 }
return successor;

 }

11 Mar 31

Successor is Right Child of
delNode

We can just move the right subtree up.
1. Disconnect current from parent and

plug in successor.
2. Disconnect current’s left child and connect

it as the left child of successor.

12 Mar 31

Delete a nodewith two children
 else {
 TreeNode successor = getAndDelSuccessor
 (current);

 if (current == root)
 root = successor;
 else if (current==parent.getLeft())
 parent.setLeft(successor);
 else
 parent.setRight(successor);
 if (current.getLeft()!=successor)
 successor.setLeft(current.getLeft());
 if (current.getRight()!=successor)
 successor.setRight(current.getRight());
}

