Traversing the Tree

e Visiting each node In a specific order.

e Recursive methods are most commonly
used to traverse atree.

e Traversal orders
e preorder
e Inorder
e postorder

1 Mar 3l

|norder Traversal

e The aforementioned ordersreally refersto
the order of the recursive call.
e Inorder:
o call itself to traverse the left subtree
e Vit the current node
o call itself to traverse the right subtree

e Visiting means doing something to a node,
simplest isto print it out.

2 Mar 31

| NOr der

public void i nOrder (Node current) {
1 f (current == null)
ret urn;
| nOrder(current.left);
current. print Node();
| norder(current.right);

}

3 Mar 3l

Preorder and Postorder

e Preorder
e VviSit the node
o call itsalf on left subtree
e call itself on right subtree
e Postorder
o call itsalf on left subtree
e call itself on right subtree
e VviSit the node

4 Mar 31

Deleting a Node

e Deletion Isthe most complicated operation
on aBST.
e Thetree may need to be reorganized.
o Cases:
e Nodeto be deleted is aleaf
e Node to be deleted has one child
e Node to be deleted has two children
e First step, find the node to be deleted and its
parent

5 Mar3l

L eaf

if (current.getLeft()
current.getRight(
{
// deleting a leaf
if (current==root)
root = null;

==null &&
) == null)

else {
1f (parent.getLeft()==current)
parent.setLeft (null);
else
parent.setRight(null);
}
}

6 Mar 3l

One Child

else 1f (current.getLeft() == null) {
// only has a right left
1f (current==root)
root = current.getRight();
else if (current==parent.getLeft())
parent.setLeft(current.getRight());
else
parent.setRight (current.getRight());

}
else 1f (current.getRight() == null) {
// only has a left left
1f (current==root)
root = current.getLeft();
else if (current==parent.getLeft())
parent.setLeft(current.getLeft());
else
parent.setRight (current.getLeft());
}

/ Mar 31

Two Children

@/
o o
o » o o

e Can not smply replace with one child.
e Must replace with smallest of the right subtree

8 Mar 31l

The Inorder Successor

e Replace the node with its inorder successor.

e Tofind Inorder successor
e Gototheright child
o Keep going down to the last left child
e |f right child has no left child, then right child

9 Mar3l

get AndDel Successor

private TreeNode getAndDel Successor(TreeNode delNode) {
TreeNode successorParent = delNodem successor = delNode;
TreeNode current = delNode.getRight();
while (current != null) {
successorParent = successor;
SUCCessor = current;
current = current.getL eft();

If (successor.getRight()==null & & successor.getL eft()==null){
If (successorParent.getL eft()==successor)
successorParent.setLeft(null);
else
successorParent.setRight(null);
return sUCcessor;

If (successor != delNode.getRight()) {
successorParent.setL eft(successor.getRight());
successor.setRight(delNode.getRight());

}

rotiirn Q Iccecentr: 10 Mar 31

Successor Is Right Child of
del Node

We can just move the right subtree up.

1. Disconnect cur r ent from par ent and
pluginsuccessor .

2. Disconnect cur r ent 'sleft child and connect
It astheleft child of successor.

11 Mar 31

Delete a nodewith two children

el se {
TreeNode successor = get AndDel Successor
(current);
| f (current == root)
root = successor;
else If (current==parent.getlLeft())
parent. setLeft (successor);
el se
parent. set Ri ght (successor);
| f (current.getlLeft()!=successor)
successor.setlLeft(current.getlLeft());
| f (current.getRi ght()!=successor)
successor.setRight (current.getR ght());

12 Mar 31

