Why Trees?

e Alternatives

* Ordered arrays
* Fast searching (binary search)
e Slow insertion (must shift)

e [inked lists

e Fast insertion

* Slow searching (must start from head of list)
* Want:

* A data structure that has quick
insertion/deletion, as well as fast search

Mar 29



What i1s a Tree?

A tree consists of nodes connected by
edges.

Tree nodes are similar to list nodes.
Data 1s stored at the nodes.

Edges tell where to go next.




Tree Terminology

Root — The node at the top

Parent — Any node having an edge running
downward to another node.

Child — Any node having an edge running
upward to another node (parent).

Sibling — A node having the same parent.
Leaf — A node that has no children.

Path — A list of successive nodes connected by
edges.

Mar 29



Tree Terminology

Subtree — Any node may be considered the root of a
subtree.

Visit — A node 1s visited when program control arrives
at the node.

Traversal — To traverse a tree means to visit all nodes
in some specific order.

Levels — The level of a node refers to how far it 1s
from the root (how many edges you need to traverse).

Height/Depth — The height of a tree 1s the level of its
youngest leaf.

Mar 29




Binary Trees

* A binary tree 1s a tree whose nodes may
have at most two children.

* The two children are call the left and right
child.

* Binary trees are data structures often with
the binary search imbedded.

* Technically called the binary search tree.



Binary Search Tree

2
>



Searching in a BST

Start from the root

Compare key with current node’s data
It equal, report success.

If less go to the left child.

If more go to the right child.

If no child present in the desired direction,

report failure.



Looking for 23

D QD



Tree Node

class Node {
private int idata; // data
Node left; // reference
Node right; // reference
Node (int key) {..}
public void printNode () { .. }

}
* Again, the references maintain the tree
structure.

e If a child does not exist, the corresponding
reference 1s set to null.

Mar 29




Data Embedding

class Node {
Person p;
Node left;
Node right;

}

// reference to data
// reference
// reference

* It’s not necessary to place data items directly

1n the node.

* A reference to an object 1s a common

approach.



The Tree Class

class Tree {
private Node root;

public Tree() {root = null};

public Node find(int key) {...}
public void insert (int key)
public void delete(int key)
//other methods ..

}

{..}
{..}




find

public Node find(int key) {
Node current = root;
while (current != null) {
if (key == current.getData())
return current;
else if (key < current.getData())

current = current.getleft();
else
current = current.getRight();

}

return null;

m




Insertion

* Very similar to find, as we must first find
the appropriate place to insert it.

* The difference 1s where £ind simply
returns null when a node doesn’t exist,
insert creates the node.

* A newly inserted node 1s always a leatf.

13



<

M N

Inserting 17

A '-\‘
4

/\

-~
-

N,
B

14



insert

public void insert (int key) {
Node current = root;
Node parent; // reference
while (current != null) {
parent = current,;
if (key < current.getData())
current = current.getlLeft();
else
current = current.getRight();
} —

;;;;;;; 15



insert

Node newNode = new Node (key);
if (key < parent.getData())
parent.setLeft (newNode) ;
else
parent.setRight (newNode) ;
return;




maln

class TreeApp {
public static void main(String[] args)
Tree theTree = new Tree();

theTree.insert (50);

theTree.insert (25);

theTree.insert (75);

Node result = theTree.find(25);

if (result != null)
result.printNode() ;

{

Mar 29

17



Search Efficiency in a BST

* In the worst case, we must go to a leatf.

* Before we can get to the leaf, we must
visit/compare with all its ancestors.

* The number of steps 1s equal to the leaf’s
level.

e A full BST has half of its nodes at the
bottom level.

e A full BST with »nodes has fogn+1) levels.

Mar 29



The Problem of an Unbalanced
Tree

Consider 1nserting this series of numbers 1nto
aBST:12345678910...

We end up with a one-sided tree!

Unbalanced trees have terrible search
efficiency.

Unbalanced trees are unlikely if incoming
data 1s random and many.

Unbalanced trees can be balanced.

19



