
The Towers of
Hanoi

A B C

Goal: Move stack of rings to another peg
● Rule 1: May move only 1 ring at a time
● Rule 2: May never have larger ring on top of

smaller ring

Recursive Towers of Hanoi

public void toh(int n, char from, char inter,
char to) {

 if (n == 1)
 System.out.println(“disk 1 from “ +
 from + ” to “ + to);
 else {
 toh(n-1, from, to, inter); // from->inter

 System.out.println(“disk “ + n + “
 from “ + from + “ to “ + to);

 toh(n-1, inter, from, to); // inter->to
 }
}

Towers of Hanoi - Complexity

● For 1 rings we have 1 operation.
● For 2 rings we have 3 operations.
● For 3 rings we have 7 operations.
● For 4 rings we have 15 operations.
● In general, the cost is
● Each time we increment n, we double the

amount of work.
● This grows incredibly fast!

2n−1=O2n 

The Wise Peasant’s Pay

Day(n) Pieces of Grain
1 2
2 4
3 8
4 16
...

2N

63 9,223,000,000,000,000,000
64 18,450,000,000,000,000,000

How Bad is 2n?

● Imagine being able to grow a billion
(1,000,000,000) pieces of grain a
second…

● It would take
● 585 years to grow enough grain just for

the 64th day
● Over a thousand years to fulfill the

peasant’s request!

It can get worse

● Ackerman's function
● public long ack(m,n) {

 if (m==0) return n+1;
 if (n==0) return ack(m-1,1);
 return ack(m-1, ack(m, n-1)); }

● ack(3, 65553) = 2^65553-3
● ack(4,2) is greater than the number of particles in

the universe

Divide-and-Conquer

● Recall the recursive binary search.
● It divides a big problem into two smaller

parts and solves each one separately.
● Subdivision keeps going in each half until

solution is reached.
● Divide-and-Conquer is a prime candidate

for a recursive method using two recursive
calls.

Mergesort

● Yet another sorting algorithm!
● More efficient than any of the sorting

algorithms seen so far.
● The idea is to divide and conquer: divide the

array in half, sort each independently, then
merge the two already sorted arrays.

● All the work is in merging.

Recursive Mergesort

public void mergesort(long[] result, int
lower, int upper) {

 if (lower == upper) return;
 else {
 int mid = (lower+upper)/2;
 // sort lower half
 mergesort(result, lower, mid)
 // sort upper half
 mergesort(result, mid+1, upper);
 // merge
 merge(result, lower, mid+1, upper);
}

Merge
public void merge(long[] a, int low,
 int high, int highend) {
 int i=0, lowstart=low,lowend=high-1;
 int mid=high-1;
while (low<=lowend && high<=highend)
 if theArray[low] < theArray[high]

 a[i++] = theArray[low++];
 else a[i++] = theArray[high++];
while (low<=mid) // if high ended
 a[i++] = theArray[low++];

 while (high <= highend) // if low ended
 a[i++] = theArray[high++];
for(i=0; i<highend-lowstart+1; i++)
 theArray[lowstart+i] = a[i];

}

Mergesort Efficiency

● Number of copies
● There are log (n) number of sorting levels
● At each level there are n copies
● Total nlog(n)

● Number of comparisons for each merge
● worse case: 1 less than the number of copies
● best case: half of the number of copies

● Mergesort is nlog(n)

