The Towers of
Hanoi

—

A B C

Goal: Move stack of rings to another peg
e Rule 1: May moveonly 1ring at atime

e Rule 2: May never have larger ring on top of
smaller ring



Recursive Towers of Hanoil

public void toh(int n,

char to) {
If (n == 1)
Systemout.println(“disk 1 from*
from+ " to “ + to),;
el se {
toh(n-1, from to, inter);
Systemout.println(“disk “ + n +
from“ + from+ “ to “ + to);
toh(n-1, inter, from to); // int

}
}

char from char

[l from >I nter

| nt er,

+

er->to

—




Towers of

~or 1 ringswe
~or 2 rings we
~or 3 rings we
~or 4 rings we

Hanol - Complexity

nave 1 operation.
nave 3 operations.
nave 7 operations.

nave 15 operations.

In general, the cost is

n_1q— n
Each timewe| ncremenzt n ,1\/veod(ozutgl ethe
amount of work.

his grows incredibly fast!



The Wise Peasant’ s Pay

Day(n) Pieces of Grain
1 2

2 4

3 38

4 16

63 9,223,000,000,000,000,000

64 18,450,000,000,000,000,000



How Bad i1s 2"?

e Imagine being able to grow abillion
(1,000,000,000) piecesof grain a
second...

e |t wouldtake

e 585 yearsto grow enough grain just for
the 64™ day

e Over athousand yearsto fulfill the
peasant’ s request!



|t can get worse

o Ackerman's function

e public long ack(m,n) {
If (m==0) return n+1,;
If (n==0) return ack(m-1,1);
return ack(m-1, ack(m, n-1)); }

e ack(3, 65553) = 2"65553-3

e ack(4,2) is greater than the number of particlesin

the universe



Divide-and-Conqguer

Recall the recursive binary search.

It divides a big problem into two smaller
parts and solves each one separately.
Subdivision keeps going in each half until
solution is reached.

Divide-and-Conquer is a prime candidate

f(;ha recursive method using two recursive
calls.



M ergesort

Y et another sorting algorithm!

More efficient than any of the sorting
algorithms seen so far.

Theideaisto divide and conquer: divide the
array 1n half, sort each independently, then
merge the two already sorted arrays.

All the work 1s1n merging.



Recursive Mergesort

public void nergesort(long[]

| ower, i1nt upper) {

1 f (1 ower upper)

el se {
int md = (| ower+upper)/ 2,
/[l sort |ower half
nergesort(result,
[/ sort upper half
nergesort(result,
/] merge
nerge(result,

return;

| ower ,
m d+1,

| ower, m d+1,

resul t,

mi d)

upper) ;

| nt

upper) ;




Merge

public void nerge(long[] a, int |ow,

I nt high, int highend) {
Int 1=0, |owstart=Ilow, | owend=hi gh-1,
I nt m d=hi gh- 1,
whi |l e (I ow<=l owend && hi gh<=hi ghend)
| f theArray[low] < theArray[ high]
al[i ++] = theArray[ | owt++];
el se a[i1 ++] = theArray[ hi gh++];
while (lowk=md) // 1 f high ended
a1 ++] = theArray[| owt++];
while (high <= highend) // 1If | ow ended
al[i ++] = theArray[ hi gh++];
for(i=0; 1<highend-lowstart+1; |++)
theArray[lowstart+i] = a[i];




Mergesort Efficiency

e Number of copies
e There arelog (n) number of sorting levels
e At each level there are n copies
e Total nlog(n)
e Number of comparisons for each merge
e worse case: 1 less than the number of copies
e best case: half of the number of copies

e Mergesort is nlog(n)



