
Variables and References

● Java has two type of variables
– Value variables

● Names being with lower case letter
– int, double, ...

– Reference Variables
● Names begin with upper Case Letters

– String, and all classes

Variable initialization

● Value variables
– Declare the name == allocate space and

set a value
● int aa;

– creates variable aa with value 0

● Reference Variables
– Declare a name makes a name and gives it

a value of null
● String aa;

– “new” keyword allocates space and
returns the location of the allocated space

● aa = new String(“bb”);

By_ref and By-value Variables
public class T1 {
 public static void incII(MyI i3) {

 i3.setII(1+i3.getII());
 System.out.println("ii="+i3);

 }
 public static void incI(int i4) {

 i4 = i4 + 1;
 System.out.println("i="+i4);

 }
 public static void main(String[] args)
 {

 MyI i1 = new MyI();
 int i2 = 0;
 System.out.println(i1 + " " + i2);
 incII(i1);
 incI(i2);
 System.out.println(i1 + " " + i2);

 }}
class MyI {
 private int ii=0;
 public int getII() { return ii; }
 public void setII(int ii) { this.ii=ii;}
 public String toString() { return ""+ii; }
}

Classes and Inheritance
● “extends” means that one class inherits

from another
– inherited things

● public and protected methods
● public and protected variables

– NOT inherited things
● private variables
● private methods
● overwritten methods

Overwriting and Overloading
● Methods of a class may be “overloaded”

– same name,

– same return value,

– different arguements
● inherited methods may be overwritten

– same name

– same return value

– same arguements

– Applets: paint, init, ...

– Applications: main, toString, ...
● NOTE

– same name requires same return value

O & O

public class T2
{
 public String toString(int i) { return "aaaa" + i; }
 public String toString(int i,String s) {return s+i;}
}

class T3 extends T2
{
 public String toString() { return "bbbb"; }
 public static void main(String[] args) {

 T2 i2 = new T2();
 T3 i3 = new T3();
 System.out.println(i2.toString());
 System.out.println(i3.toString());
 System.out.println(i2.toString(5));
 System.out.println(i3.toString(5));
 System.out.println(i2.toString(5, "a"));
 System.out.println(i3.toString(5, "a"));

 }
}

Order Estimates
● Make time (or space) estimates based

on some quantity – typically input
● Ignore constant factors
● Typically from a small set of functions
● Worry about what happens when n is

large
– O(n), O(n^2), O(n^3), O(2^n), O(1), O(log log n), O(n * log n), O

(log n), O(2^n^n)

Searching

● Linear
– O(n)
– works on everything

● Binary
– O(log n)
– requires items be sorted
– requires items are in a data structure

allowing non-sequential access

Sorting
● O(n^2) for all algorithms
● Bubble

– compare neighbors, if not in order, swap

● Selection
– find the smallest, put it first. Find the

second smallest, put it second, ...

● Insertion
– assume the first items is sorted. Move the

second item so that the first two are
sorted. Move the third item ...

Stacks

● Last in – first out
● Basic operations

– push
– pop
– size

● If stack implemented using arrays need
a system for increasing the size of the
stack

Queues

● first in – first out
● Basic Operations

– enqueue
– dequeue
– size

● If implemented using arrays need a
system for increasing the size

Using a queue to make a stack

● Problem:
– I have a queue implementation.
– I want a stack.
– I want to extend the Queue to make a stack
– I want all operations to be O(n).
– I want to use only 1 queue

● Question: Can I do this? How?

Using a stack to make a queue

● Problem:
– I have a stack implementation.
– I want a queue.
– I want to extend the stack to make a queue
– I want all operations to be O(n).
– I want to use only 1 stack

● Question: Can I do this? How?

Linked Lists
● Typically implemented using two

classes
● Node

– holds data items
– holds next pointer

● Linked List
– holds pointer to start of list
– convenience methods

data

next

Node

data

next

Node

data

next

Node

data

next

Node

null

The last
node

