
Priority Queue

● A specialized queue where the order of the
queue is kept according to priorities.

● Insertion of an object into the queue
(enqueue) no longer always happens to the
end of the queue.

● Object is inserted into the appropriate
position in the queue based on its priority.

Jay 112

Reba 41

Jane 16

Al 15

Sandy 0

0
1

7

rear

front

Example: Priority Queues

● Keep the queue in sorted order

Jay 112

Reba 41

Jane 16

Al 15

Sandy 0

0
1

7

rear

front

enqueue(Ann, 21);

dequeue();

dequeue();

enqueue(Laura, 2);

Jay 112

Reba 41

Ann 21

Jane 16

Al 15

Sandy 0

0
1

7
rear

front

Jay 112

Reba 41

Ann 21

Jane 16

Al 15

0
1

7
rear

front

Jay 112

Reba 41

Ann 21

Jane 16

0
1

7
rear

front

Jay 112

Reba 41

Ann 21

Jane 16

Laura 2

0
1

7
rear

front

Other implementations of PQs

● Leave the queue unsorted, but always
dequeue the item with the smallest priority

● Use multiple queues of different priority
settings
● Since each queue has all objects of the same

priority, we go back to a normal queue
● When dequeueing, always take off from the

lowest non-empty priority queue

Asymptotic Efficiency

● Stack
● Push – O(1) – doubling aside
● Pop – O(1)

● Queue
● Enqueue – O(1) – doubling aside
● Dequeue – O(1)

● Priority Queue
● Enqueue – O(n) – doubling aside
● Dequeue -- O(1)

Stack Applications

● Stacks are often used to remember where
we were (i.e. back tracking), or to revert
back to a previous state.

● Some common stack applications:
● language parsing
● undo features, scratch pads, path finding
● function/methods calls

Reversing a Word

● Idea: push each character of the word on to
the stack as one reads them from left to
right. When done, pop the characters off the
stack.

Word Reverse

public void push(char c) {
theArray[++tos] = c;

 }
public char pop() {

if (isEmpty() != true)
 return theArray[tos--];
}
public char top() {

if (isEmpty() != true)
 return theArray[tos];
}

}

Word Reverse

class Reverser {
private String input;
private String output = “”;
public Reverser(String in){input=in;}
public String reverse() {

int s = input.length;
MyStack s = new MyStack(s);
for (int i=0;i<s; i++)
 s.push(input.charAt(i));
while (s.isEmpty() != true)
 output += s.pop();
return output;

 }
}

Delimiter Matching

● Parsing the parentheses in a programming
language such as Java

● Parsing the parentheses in a math
expression
● c[d] // correct

● a{b[[c]d]} // correct

● a{b[c}d} // incorrect

● a{b(c) // incorrect

Delimiter Matching

class CharStack {
 private char[] theArray;
private int size;

 private int tos; //top of stack -1 if empty

 public MyStack(int size) {
 theArray = new char[size];
 tos = -1;
 }
public boolean isEmpty() {

return (tos == -1);
 }
 ...

What are the rules of of matching
parentheses?

● Every open paren must be matched by
exactly one closing one.

● The last occuring paren must be the first
which is matched (closed), that is, all
closing must be done in the reverse order in
which it was opened.

Solution with a Stack

● Start reading the text from left to right
● When we see an open paren, push it onto the

stack.
● When we see a closing paren, look at the current

top of stack. If the current tos paren matches the
closing paren, then pop the tos and continue.
Otherwise report non-matching.

● Do nothing for all other characters.
● If at the end of input, stack is empty, then

matching is successful.

a{b(cc[d])e}f

{{

-a

-f

-}

{e

{)

{(]

{([d

{([[

{(c

{(c

{((

{b

stackchar read

Delimiter Matching
public class ParenMatch {
 public static void main(String[] args) {

char[] open = {'<', '[', '{', '('};
char[] clos = {'>', ']', '}', ')'};
CharStack cs;
try {

for (int i=0; i<args.length; i++) {
cs = new CharStack();
boolean ok=true;
for (int j=0; j<args[i].length(); j++) {

char c = args[i].charAt(j);
boolean got=false;
for (int z=0; z<open.length; z++)
 if (c==open[z]) got=true;
if (got) {
 cs.push(c);
}
else {

for (int z=0; z<clos.length; z++)
 if (c==clos[z]) got=true;
if (got) {

if (!(cs.pop()==c))
 ok=false;

 } } }
System.out.println(args[i] + " " + ok); } }

catch (Exception e) {
e.printStackTrace(); } } }

Classing the Registrar

