Keeping items sorted
A better way

Stacks

CS151 1

Midterm 1

e I will post solutions over break
e Grades later today

CS151 2

No Lab Today

Hw?5 1s available to be worked on over break
I assume must of you will not but it will be due on
the Wednesday after break.

CS151 3

Sorted} \rray List

public class Sal<C> {

e Problem
e how to guarantee that the Generic class C has an ordering ...
e Homework 4 convert to string and compare those strings
e That method is less than optimal Why?
e It would be better to require that items have an ordering

e or at least that items know ordering with respect to each
other.

e In Java — require the Comparable interface

CS151 4

Comparable Interface

e Part of Java language

e Idea, give a way for classes to define a
total ordering of instances

e Java classes that implement:
e String
o All descendants of Number
e Lots of others

CS151 5

The Comparable Interface

public interface Comparable<T>
This interface imposes a total ordering on the objects of each class that implements it. This ordering is referred
as the class's natural ordering, and the class's compareTo method is referred to as its natural comparison
method.Lists (and arrays) of objects that implement this interface can be sorted automatically

by Collections.sort (and Arrays.sort). Objects that implement this interface can be used as keys in
a sorted map or as elements in a sorted set, without the need to specify a comparator.
The natural ordering for a class C is said to be consistent with equals if and only if el .compareTo(e2) == 0
the same boolean value as el.equals(e2) for every el and e2 of class C. Note that null is not an instance o
any class, and e.compareTo(null) should throw a NullPointerException even
though e.equals(null) returns false.
It is strongly recommended (though not required) that natural orderings be consistent with equals. This is so
because sorted sets (and sorted maps) without explicit comparators behave "strangely" when they are used witl
elements (or keys) whose natural ordering is inconsistent with equals. In particular, such a sorted set (or sortec
map) violates the general contract for set (or map), which is defined in terms of the equals method.
For example, if one adds two keys a and b such that (!a.equals(b) && a.compareTo(b) == 0) toasor
set that does not use an explicit comparator, the second add operation returns false (and the size of the sorted :
does not increase) because a and b are equivalent from the sorted set's perspective.
Virtually all Java core classes that implement Comparable have natural orderings that are consistent with equ
One exception is java.math.BigDecimal, whose natural ordering equates BigDecimal objects with equal
values and different precisions (such as 4.0 and 4.00).
For the mathematically inclined, the relation that defines the natural ordering on a given class Cis:__

{(x, y) such that x.compareTo(y) <= 0}.

https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html#sort-java.util.List-
https://docs.oracle.com/javase/8/docs/api/java/util/Arrays.html#sort-java.lang.Object:A-
https://docs.oracle.com/javase/8/docs/api/java/util/SortedMap.html
https://docs.oracle.com/javase/8/docs/api/java/util/SortedSet.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

Comparable interface
(shortened)

int compareTo(T o)

Compares this object with the specified object for order. Returns a negative integer, zero, or a positive integer as this object is less
than, equal to, or greater than the specified object.

The implementor must ensure sgn (x.compareTo(y)) == -sgn(y.compareTo(x)) for all x and y. (This implies

that x.compareTo (y) must throw an exception iff y.compareTo (x) throws an exception.)

The implementor must also ensure that the relation is transitive: (x.compareTo(y)>0 &&
y.compareTo(z)>0) implies x.compareTo(z)>0.

Finally, the implementor must ensure that x.compareTo (y)==0 implies that sgn (x.compareTo(z)) ==
sgn(y.compareTo(z)), for all z.

It is strongly recommended, but not strictly required that (x.compareTo(y)==0) == (x.equals(y)). Generally speaking, any
class that implements the Comparable interface and violates this condition should clearly indicate this fact. The recommended
language is "Note: this class has a natural ordering that is inconsistent with equals."

In the foregoing description, the notation sgn (expression) designates the mathematical signum function, which is defined to return
one of -1, 0, or 1 according to whether the value of expression is negative, zero or positive.

Parameters:

o - the object to be compared.

Returns:

a negative integer, zero, or a positive integer as this object is less than, equal to, or greater
than the specified object.

CS151 7

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

Comparable Interface
(even shorter)

public interface Comparable<T> {
int compareTo(T o0);
}

return O if they are equal
return <0 if caller is less than compared
return >0 if caller greater than compared
e Integer v3 = Integer.valueOf(3).
e v3.comparelo(4) ==> -1
o "D".comparelo("A") ==> 3

CSI151 8

Comparable Example

public class MyInteger implements Comparable<MyInteger> {

protected final int value;

public MyInteger(int value) {
this.value = value;

Iy

public int getValue() {
return value;
¥

Tt look like this should not be allowed since
value is protected. But you are within g
the MylIntegerClass so can look at private
and protected values of other instances.

(Or just use getValue() method)

\

N\

public int compareTo(MyInteger other) {
return value — other.getValue();

I3
public boolean equals(Object ob) {
if (ob instanceof MyInteger)

return value == ((MyInteger) ob).value;

if (ob instanceof Integer)
return value == ((Integer)
return false;

ob).intValue();

CS151 0

Comparable Practice

public class CompExRect implements Comparable<CompExRect> {
protected int width, height;

public CompExRect(int w, int h) {
width = w;
height = h;

}

public int area() { return width % height; }

Finish this class so that it implements
the Comparable interface, using area
to judge relation. Also write toString
and equals
Suppose wanted to change to

using perimeter?

CSI151 10

Testing CompEXxRect

public static void main(Stringl[] args) {
CompExRect[] ce = { new CompExRect(3,4), new CompExRect(5, 2), new
CompExRect (11, 1), new CompExRect(1, 7) };

for (int i=0; i<ce.length-1; i++) {
for (int j=i+1; j<ce.length; j++) {
System.out.println(ce[i] + " " + ce[j] + " " +
cel[il.compareTo(celjl));
I3
}

CSI151 11

——
—— S ack
- t >

=

e Insertion and deletions are First In Last Out
e FILO
e or LIFO

e Physical stacks are everywhere!

* REQUIREMENT
* every method O(1)
* What functions does a stack need?

CSI151 12

Stack Interface

* How do you inform
user Of StaCk that it Is public interface StackInft<E> {

em ceek and public boolean empty();
pty b public E push(E e);

5
POP: public E peek();
* throw exception? public E pop();
public int size();
* runtime or public void clear();
checked? ;

* return null?
* Something else?

CSI151 13

Example

Method Return Value |[Stack Comtents

push(5) 5 {5}
push(3) 3 {5, 3}
size() 2 {5, 3}
pop() 3 {5}
empty() FALSE {5}
pop() 5 {}
empty() TRUE {}
pop() null {}
push(7) 7 {7}
push(9) 9 {7,9}
peek() 9 {7.9}

CS151 14

Array-based Stack

e Implement the stack with an array
e Add elements onto the end of the array
e Use an int size to keep track of the top

sLITTTTTIN - SNELT
0 1 2 Si
e

CSI151 15

Performance and Limitations of Array Stack

e Performance
o let n be the number of objects in the stack
o The space used is O(n)
o Each operation runs in time O(1)

e Limitations
o Max size is limited and can not be changed

o Pushing onto a full stack will fail
o need to handle that

CSI151 16

Why not ArrayList?

e Every operation in Array stack is O(1)
e NOT true for ArrayList
e Consider grow

e unlike Hashtables, no wink and smile at ignored
Issues

e So if want O(1) guarantee for Stack cannot use ArrayList.
e For now, bound to array which means

o fixed size

e wasted space

CSI151 17

Push

e Array has set size and may become full

e A push will fail if the array becomes full

o Limitation of the array-based implementation
o Alternatives?
o Make the array grow (use ArrayList)?
o why not?
o What do to on fail?
o return null
o throw exception

CSI151 18

Implementing an Array-based stack

public class ArrayStack<K> implements StackIntf<kK> {
private static final int DEFAULT_CAPACITY = 40;
private int size;
private K[] underlyingArray;

public ArrayStack() {
this (DEFAULT_CAPACITY);
I3

public ArrayStack(int capacity) {
size=0,
underlyingArray = (K[]) new Object[capacityl];

CSI151 19

Implementing SAL

e Suppose you want to have an underlying
ArrayList

e Why not just an array?

e Question

e a new class that has an ArrayList as a private
element (like we just did with String)?

e a class that extends ArrayList?
e How do you choose?

CSI151 20

SAL — Extending ArrayList

e Methods to add to
ArrayList

e the
SortedListInterface

e Others?

e Methods to remove
from ArrayList

e How do you
remove???

boolean add (E e)
void add(int index, E element)
boolean addAll (Collection<? extends E> c)
boolean addAll (int index, Collection<? exte
void ()
get (int index)
int (0)
boolean ()
remove (int index)
boolean (0)
boolean (<?> ¢)
set (int index, E element)
int ()
<T> T[] toArray (T[] a)

CSI151

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#add-E-
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#add-int-E-
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#addAll-java.util.Collection-
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#addAll-int-java.util.Collection-
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#clear--
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#get-int-
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#indexOf-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#isEmpty--
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#remove-int-
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#remove-java.lang.Object-
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#removeAll-java.util.Collection-
https://docs.oracle.com/javase/8/docs/api/java/util/Collection.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#set-int-E-
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#size--
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html#toArray-T:A-

SAL — new class

e Advantages
e Disadvantages

e Must implement interface — else?

CSI151 22

Sorted} \rray List

e extends ArrayList!!!
e should be able to hold almost anything
e Generic!!
e overrides
e add(E) — certainly
e add(index, E)?
e Implementation may do nothing!
e or just so a sorted add, ignoring index
o set(index, element)
e like add(index, element)
e remove(int) ??

CSI151 23

Code for SortedArrayList

public class SALextending<B extends Comparable> extends ArrayList
implements SortedListInterface {
public boolean add(B obToAdd) {
int loc = findPlace(obToAdd);
insertAtLoc(obToAdd, loc);
return true;

¥
private int findPlace(B toAdd) {

int place=0;

while (place<size()) {
if (toAdd.compareTo(get(place))<0) {

break;

} else {
place++;

}

return place;

24

More SortedArrayList

private void insertAtLoc(String toAdd, int atLoc) {

if (size()==0) {
// use the original add function from ArraylList
super.add(toAdd);
return;

Iy

// Use the original Add and set function from arraylist

super.add((String)get(size()-1));

for (int 1l=size()-2; ll>=atLoc; 11--) {
super.set(11+1, get(1l));

Iy

super.set(atLoc, toAdd);

CSI151 25

To keep in sorted order

e Figure out where something should be put
* O(n)
e put it there
e O(n)
e Overall Complexity for 1 add
e O(n) + O(n) = O(n)
o Complexity for N add
e O(n) * O(n) = O(n"2)

CSI151 26

