
cs151

Finish Hash Tables
Review

CS206

Growing Probe Hashtables

• O(1) get and put when lightly loaded so
want to keep the table lightly loaded.

• Need to add a private “Grow” function to put
• Grow:
• make a new array bigger than old array

(2x)
• copy each item from old array into new

array (into the correct location)
• forget old array

2

CS206

Growing Hashtables

3

public class ProbeHTInc<K, V> implements Map151Interface<K, V> {

 private Pair<K, V>[] backingArray;

 private int hash(K key) {

 return Math.abs(key.hashCode()) % backingArray.length;

 }

private void grow() {

 // write me

}

cs151

Probing Distance (Summary)

• Given a hash value , linear probing generates

• Primary clustering – the bigger the cluster gets,
the faster it grows

• Quadratic probing –

• Quadratic probing leads to secondary clustering,
more subtle, not as dramatic, but still systematic

• Double hashing
• has neither primary nor secondary clustering

h(𝑥)
h(𝑥), h(𝑥) + 1, h(𝑥) + 2, …

h(𝑥), h(𝑥) + 1, h(𝑥) + 4, h(𝑥) + 9, …

4

cs151 Lec19

Performance Analysis for probing

• In the worst case, searches, insertions and removals take time
▫ when all the keys collide

• The load factor affects the performance of a hash table

▫ expected number of probes for an insertion with open addressing is

• Expected time of all operations is provided is not close to 1
• Rule of thumb:

• small hashtables -- <0.5

• larger hashtables -- <0.66

𝑂(𝑛)

𝛼
1

1 − 𝛼
𝑂(1) 𝛼

𝛼
𝛼

5

cs151

Removing Items

• In separate chaining just remove.
• Probing: cannot simply delete as

positions are dependent on what was
there are time inserted

• So rather than set position empty on
delete, replace item with "tombstone"

6

cs151

Probing vs Chaining

• Probing is significantly faster in practice
• locality of references – much faster to

access a series of elements in an array
than to follow the same number of
pointers in a list

• Efficient probing requires tombstoning
• de-tombstoning??

7

cs151

Sample Hashtable use

• Problem I have a random string generator
and I want to see how "random" it is.

• Concept, generate lots of random strings,
put them in hashtable, find out how many
unique strings I actually saw

• Complexity Analysis
• Generate a string: O(1)
• Add N strings into hashtable: O(N)
• Count number of things in hashtable: O(1)

8

cs151

Code for random string checker

9

public class UseHT {
 private SepChainHT<String, Integer> hashT;
 private Random rand;

 public UseHT() {
 hashT = new SepChainHT<>(10001);
 rand = new Random();
 }

 private String randomString(int len) {
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < len; i++) {
 sb.append('a' + rand.nextInt(26));
 }
 return sb.toString();
 }

The random string generator
to be investigated.

cs151

Actual checker

10

 public void querrier() {
 for (int i = 2; i < 5; i++) { // length of random string
 for (int j = 1; j < 100001; j = j * 10) { // number of strings to make
 hashT = new SepChainHT<>(j*2);
 for (int k = 0; k < j; k++) { // actually to the work specified by the other
loops
 String s = randomString(i);
 hashT.put(s, 1);
 }
 System.out.println(
 "Random String length: " + i +
 " number generated " + j +
 " number unique " + hashT.size());
 }
 }
 }

if (!hashT.containskey(s)) {
}
??

CS206

Java
• Classes and Inheritance

• Overloading
• method with same name but different parameters

• equals(Object ob) vs equals(String st)
• Overriding of methods

• same name, same args but in extending class
• marked by @Override

• Exceptions Chapter:Interlude 2,3
• UML and Java Interfaces Chapter: Prelude
• Generics Chapter Interlude 1,8
• Inner classes

11

CS206

Data Structures

• Arrays
• Bags Chapter 1,2
• ArrayList Chapter 10
• Maps Chapter 20,21
• key-value pairs

• Hashtables Chapter 22,23

12

CS206

Theory
• Complexity Analysis — Big-O — Chapter 4

• drop constants
• focus on dominant term
• always look at worst case
• Look for loops

• loops incrementing using + or -: O(n)
• loops incrementing using * or /: O(lg n)
• loops inside loops (inside loops): multiply
• loops next to loops: add

• Modularity, Abstraction and Encapsulation —
• Chapter: Prelude

13

cs151

Study suggestion

• Do not just read notes / book.
• Instead, be active
• Read notes / book describing one

algorithm (or data structure)
• Write code for that algorithm
• Do complexity analysis for that

algorithm

14

cs151

Practice

• Write a class for Car
• it should have several instance variables

(eg color, manufacturer, size of engine)
• write an equals method for Car
• write a toString method for Car

• Create several instances of Car and add
them to a List151Impl (or ArrayList)

• Write a user interaction that allows people
to ask if a car is in your list.

15

