
CS151

CS151

Software Design

Java Generics

Generic Bags

1

CS151

Software Design Goals

writing good code

• Robustness

▫ software capable of error handling and recovery

▫ programs should never crash

▫ ending abruptly is not crashing

• Adaptability

▫ software able to evolve over time and changing conditions

(without huge rewrites)

• Reusability

▫ same code is usable as component of different systems in

various applications

▫ The story of Mel — https://www.cs.utah.edu/~elb/folklore/mel.html

2

https://www.cs.utah.edu/~elb/folklore/mel.html

CS151

OOP Design Principles
• Modularity

• programs should be composed of “modules” each of which do their own
thing

• each module is separately testable

• Large programs are built by assembling modules

• Objects (Classes) are modules

• Abstraction

• Get to the core — non-removable essence of a thing

• Most pencils are yellow, but yellowness does not required. They do have a

color

• Encapsulation

• Nothing outside a class should know about how the class works.

• For instance, does the Object class have any instance variables. (Of

what type?)

• Allows programmer to totally change internals without external effect

• What is external? By one definition, all vars should be "private"

3

The correct level of
modularity and abstraction
is debatable; in the end a
programming choice

The correct level of
modularity and abstraction
is debatable; in the end
these are a programming
choice

CS151

OOP Design

• Responsibilities/Independence: divide the work
into different classes, each with a different
responsibility and are as independent as
possible

• Behaviors: define the behaviors for each class
carefully and precisely, so that the
consequences of each action performed by a
class will be well understood by other classes
that interact with it.

• Recall: Java Interfaces define ONLY behaviors

4

CS151

Software design

• Good variable names

• Comments

• In Java

• Avoid statics

• Minimize main

• Use inheritance and class design

5

CS151

Think before coding

• Point of UML (and one of the points of
Java interfaces) is to get you to think
about a problem before writing code

• Please do so

• While writing code,

• get up and walk about

• talk to a classmate about your thoughts

• Start early … please

6

CS151

Java Interfaces
• No data fields

• No constructors

• No private methods

• No protected methods

• No bodies for methods

• Lots of instructions about
how the IO behavior of
methods

• I will tend to use Java
interfaces rather than UML

7

/**

 * Interface definition for Bag

 * Adapted slightly from Carrano & Henry

 * @author GTowell

 * Created: July 2021

 */

public interface BagOfPets {

 /**

 * The number of pets in the bag

 * @return the number of pets in the bag

 */

 public int numberOfItems();

 /**

 * true if there is at least one pet in the bag

 * @return true if there is at least one pet in the bag, false otherwise

 */

 public boolean isEmpty();

//etc

CS151

BagOfPets Interface

8

public interface BagOfPets {

 /**

 * The number of pets in the bag

 * @return the number of pets in the bag

 */

 public int numberOfItems();

 public boolean isEmpty();

 public boolean add(Pet p);

 public Pet remove();

 public boolean remove(Pet p);

 public void clear();

 public int countOf(Pet p);

 public boolean contains(Pet p);

 public void display();

}

Same things as UML,
just in java syntax

Every method
documented, a
lot!!

CS151

Implementing BagOfPets
• java

• public X
implements Y

• This says making a
class that will provide
bodies for EVERY
method in interface Y

• Possibly more methods

• private or protected
helpers for public

• private instance
variables

9

/**

 * An implementation of the BagOfPets interface

 *

 * Note that anything marked with @Override does not

 * need documentation as it should be documented

 * elsewhere. Unless implemtation is not per doc

 * @author gtowell

 * Created: July 2021

 *

 */

public class PetBag implements BagOfPets {

 @Override

 public int numberOfItems() {

CS151

BagOfPets & PetBag
• Design Goals:

• robustness

• Good (probably)

• adaptability

• poor (only pets)

• reusability

• poor (only pets)

• Design principles

• Modularity

• OK

• Abstraction

• poor (only pets)

• encapsulation

• OK

• Conclusion: These kind of suck!

10

public class PetBag implements BagOfPets {

 /** The array holding the information in the bag */

 private Pet[] petArray;

 /**

 * The default constructor.

 * Creates a bag that can hold 100 pets.

 */

 public PetBag() {

 this(100);

 }

 /**

 * Constructor for pet bag

 * param sizeOfBag is the size of the bag

 */

 public PetBag(int sizeOfBag) {

 petArray = new Pet[sizeOfBag];

 }

CS151

IN CLASS

• Implement the following methods for
ObjectBag

• numberOfItems: int

• the number of pets in the bag

• empty: boolean

• Does the bag have any items

• clear: void

• Remove all items from the bag
11

CS151

Generify code
• Idea: write code without

being tied to Pets

• Approach 0

• Replace every mention of
Pet with Object.

• Since all class inherit
from Object, can put
anything into bag.

• Redefinition works!

• Until Java v5 this was only

solution

• ability to put ANYTHING

into Bag can cause
problems at run time

12

public class Bag implements BagOfObjects {

 /** The array holding the information in the bag */

 private Object[] obArray;

 /**

 * The default constructor.

 * Creates a bag that can hold 100 things.

 */

 public ObjectBag() {

 this(100);

 }

 /**

 * Constructor for bag

 * param sizeOfBag is the size of the bag

 */

 public ObjectBag(int sizeOfBag) {

 obArray = new Object[sizeOfBag];

 }

CS151

Generics

• Idea: want Bag to store anything, BUT
only one kind of anything at a time.

• Let the specific thing be “bound” at
compile time

• Avoid a lot of run-time problems

• Java: Generics

• Same idea appears in lots of other

languages, with slightly different syntax
13

CS151

Generic Interface

• Note the <S>

• This indicates a

“generic”

• By Convention:

Generic indicated
by any single
capital letter

• Then “S” is used in
rest of interface
where it was “Pet”

14

public interface BagOfStuff<S> {

 public int numberOfItems();

 public boolean isEmpty();

 public boolean add(S p);

 public S remove();

 public boolean remove(S p);

 public void clear();

 public int countOf(S p);

 public boolean contains(S p);

 public void display();

}

CS151

Generic Class

• Two uses of
<R>

• After that,
again, replace
all mentions of
“Pet” with “R”

• One trick:
making
generic array.

15

public class StuffBag<R> implements BagOfStuff<R> {

 /** The array holding the information in the bag */

 private R[] stuffArray;

 /**

 * The default constructor.

 * Creates a bag that can hold 100 stuff.

 */

 public StuffBag() {

 this(100);

 }

 /**

 * Constructor for stuff bag

 * param sizeOfBag is the size of the bag

 */

 @SuppressWarnings("unchecked")

 public StuffBag(int sizeOfBag) {

 stuffArray = (R[])new Object[sizeOfBag];

 }

CS151

Generic Bag Shelter
• Variable declaration

• says that this instance of StuffBag
can only hold Pet

• and descendents

• auto cast

• Variable Creation

• actually make an instance of

StuffBag that holds only Pets

• Access

• Get a Pet

• The instance still knows what

it is, but the code does not.

• So to do something specific,

need to check then cast.

• Cannot be automatic

• instanceof

16

public class Shelter {

 // the store for the animals in the shelter

 private StuffBag<Pet> animals;

 public Shelter() {

 animals = new StuffBag<Pet>(100);

 }

 public void addAnimal(Pet animal) {

 animals.add(animal);

 }

 public Pet adoptRoulette() {

 return animals.remove();

 }

 @Override

 public String toString() {

 return animals.toString();

 }

 public static void main(String[] args) {

 Shelter shelter = new Shelter();

 shelter.addAnimal(new Dog("dave", "toy"));

 shelter.addAnimal(new WorkingDog("Jane", "BorderCollie"));

 shelter.addAnimal(new Cat("Calypso", "1", "Siberian"));

 Pet aa = shelter.adoptRoulette();

 if (aa instanceof Cat) {

 Cat c = (Cat) aa;

 System.out.println("I Got a Cat!!!!" + c + aa);

 }

 System.out.println(aa);

 System.out.println(shelter);

 }

}

CS151

Classes with multiple Generics

• You can have
many

• You can have
some generic
and some
not

17

public class KeyValue<U, V> {

 private final U key;

 private final V value;

 public KeyValue(U key, V value) {

 this.key = key;

 this.value = value;

 }

 public U getKey() {

 return key;

 }

 public V getValue() {

 return value;

 }

 @Override

 public String toString() {

 return "<" + key + ", " + value + ">";

 }

 public static void main(String[] args) {

 KeyValue<String, Integer> ksvi = new KeyValue<>("key", 1);

 KeyValue<Double, StringBuffer> kdvsb = new KeyValue<>(3.1415, new
StringBuffer("Now is the time"));

 System.out.println(ksvi);

 System.out.println(kdvsb);

 }

}

