
cs151

Trees

1

cs151

Tree

• A tree is an abstract
model of a
hierarchical structure

• Nodes have a parent-
child
relation

• No loops

• One Path

2

Computers”R”Us

Sales R&DManufacturing

Laptops DesktopsUS International

Europe Asia Canada

cs151

Terminology
Same as for heaps

• root: no parent – A
• There is only one

root
• external node/leaf: no

children – E, I, J, K, G, H, D
• internal node: node with

at least one child - A, B, C, F
• ancestor/descendent
• depth - # of ancestors
• Height - max depth

• Subtree: tree
consisting of a node
and its descendants

3

A

B DC

G HE F

I J K

cs151

Binary Tree

• An tree with every node having at most
two children – left and right

4

cs151

Type of Binary Trees

• A binary tree is complete if every level
(except possibly the last) is filled
• A (binary) heap is a complete binary

tree
• A Complete binary tree has height =

log2(n)

5

cs151

Binary Tree Properties

• Let denote the number of nodes and
the height of a binary tree
▫
▫

• Height of a binary tree
is usually (you hope)

of the max
number of nodes
• worst case ??

𝑛 h

h + 1 ≤ 𝑛 ≤ 2h+1 − 1
log(𝑛 + 1) − 1 ≤ h ≤ 𝑛 − 1

𝑂(𝑙𝑜𝑔𝑛)

6

...

0

... ...

1

2

3

1

...

2

4

8

Level Nodes

cs151

Interface

7

public interface TreeInterface
{
 int size();
 int height();
 boolean isEmpty();
 boolean contains(B element);
 void insert(B element);
 B remove(B element);
 String printNaturalOrder();
}

cs151

Implementation

8

protected class Node<F extends Comparable<F>> {
 F payload;
 Node<F> right;
 Node<F> left;

 public Node(F e) {
 payload = e;
 right = null;
 left = null;
 }

 public String toString() {
 return payload.toString();
 }
 } This looks a lot like a doubly linked list!!

So, is a doubly linked list a tree?

payload

cs151

Class

9

public class LinkedBinaryTree<E extends Comparable<E>>
implements TreeInterface<E> {

 protected Node . . .

 protected int size;
 protected Node<E> root;

Class name violates Encapsulation!

cs151

Insertion

• smaller to the left, bigger to the right

10
Following this pattern creates a “Binary Search Tree”

cs151

size() without size

11

• Size (number of nodes) of tree is
• size of right subtree plus
• size of left subtree plus
• 1

 public int size() {
 return sizeAltUtil(root);
 }

 private int sizeAltUtil(Node<E> treepart) {
 if (treepart == null)
 return 0;
 return sizeAltUtil(treepart.right) +
 sizeAltUtil(treepart.right) +
 1;
 }

Its recursive!!!

CS206

Height / maxDepth

12

Again, using a recursive helper method

 @Override
 public int height()
 {
 return maxDepthUtil(root, 1);
 }

 int maxDepthUtil(Node n, int depth) {
 …}

live write

cs151

contains

• returns true if found in the tree, false
otherwise

• Assumes / requires Binary search tree

13

cs151

Contains Algorithm

• compare with root of current subtree
▫ root is empty – return false
▫ root == element – return true
▫ root < element – recurse on right child
▫ root > element - recurse on left child

▫ Comparisons are assumed to be done using
Comparable interface (ie, the compareTo method)
▫ <E extends Comparable<E>>

14

cs151

Pseudo Code
findRec(root, key):
 if root == null:
 return false
 if root.key == key:
 return true
 if root.key > key:
 return findRec(root.left, key)
 else
 return findRec(root.right, key)

15

cs151

Contains Code
• Write using a recursive helper method

16

public boolean contains(E element) {
 if (root==null) return false;
 return containsUtil(root, element)!=null;
 }
private Node containsUtil(Node treepart, E toBeFound) {
 … }

live write

cs151

Unordered Contains

• Suppose that you did not know relation
among children (you do NOT have a binary
search tree)

• So thing being looked for could be either
left or right

• How would you change containsUtil
function

• Would a tree be a useful structure in
this case?

17

cs151 Lec13

insert
• void insert(E element);

• new node is always inserted as a leaf
• inserts to

▫ left subtree if element is smaller than subtree root
▫ right subtree if larger

▫ Pre-case: if root=null then root=new Node

18

public void insert(E element) {
 if (root==null) {
 root=new Node<E>(element);
 size = 1;
 } else
 insertUtil(root, element);
 }

cs151 Lec13

Groups

19

 private void insertUtil(Node treepart, E toBeAdded) {
 … }

• Draw binary search trees for data received from left to
righto

• 4, 5, 6, 49, 43, 31, 19, 10, 11, 8, 17
• 17, 31, 8, 19, 43, 11, 5, 49, 10, 6, 4

• Write insertUtil

cs151

Traversals / Printing

20

cs151

Postorder traversal

21

 public void printPostOrder() {
 iPrintPostOrder(root, 0);
 System.out.println();
 }

 private void iPrintPostOrder(Node treePart, int depth) {
 if (treePart==null) return;
 iPrintPostOrder(treePart.left, depth+1);
 iPrintPostOrder(treePart.right, depth+1);
 System.out.print("["+treePart.payload+","+depth+"]");
 }

cs151 Lec14

Remove

• boolean remove(E element);

• returns true if element existed and was
removed and false otherwise

• Cases
▫ element not in tree
▫ element is a leaf
▫ element has one child
▫ element has two children

22

cs151 Lec14

Leaf

23

• Just delete

cs151 Lec14

One child

• Replace with child – skip over like in linked
list

24

cs151 Lec14

Two Children

25

• Replace with in-order predecessor or in-
order successor

• in-order predecessor
▫ rightmost child in left subtree
▫ max-value child in left subtree

• in-order successor
▫ leftmost child in right subtree
▫ min-value child in right subtree

cs151 Lec14

Replace with Predecessor

26

cs151 Lec14

Replace with Successor

27

cs151

Practice

• Given the data:

• 6, 19, 10, 5, 43, 31, 11, 8, 4, 17, 49, 36

• Draw the binary tree
• Write the preorder traversal of your tree
• Write the postorder traversal of your tree
• What the height of the tree?
• If the data were re-arranged, what is the

shorted possible tree?
28

