Trees

Tree

e A tree is an abstract
model of a
hierarchical structure

e Nodes have a parent-
child
relation

e No loops
e One Path

csl5l 2

Terminology
Same as for heaps

root: no parent —. e Subtree: tree
e There is only one consisting of a node
root and its descendants

external node/leaf: no
children — ...

internal node: node with
at least one child - ...

ancestor/descendent
depth - # of ancestors
Height - max depth

csl5l 3

Binary Tree

e An tree with every node having at most
two children — left and right

cslSl1 4

Type of Binary Trees

e A binary tree is complete if every level
(except possibly the last) is filled

e A (binary) heap is a complete binary
tree

e A Complete binary tree has height =
log2(n)

£ oo iy

csl51

Binary Tree Properties

e | et n denote the number of nodes and 4
the height of a binary tree

ch+1<n<2Mtl
ologh+ 1) —-1<h<n-1

e Height of a binary tree .
is usually (you hope)

O(logn) of the max
number of nodes

e worst case ??

csl5l 6

Interface

public interface TreelInterface

{

int size():

int height();

boolean isEmpty();

boolean contains(B element);
void insert(B element);

B remove(B element);

String printNaturalOrder();

csl51

Implementation

protected class Node<F extends Comparable<F>> {
F payload;
Node<F> right;
Node<F> left;

public Node(F e) {

payload = e;
right = null; /’
left = null; \
1 left payload right

public String toString() {
return payload.toString();
I3

1 This looks a lot like a doubly linked list!!
So, 1s a doubly linked list a tree?

csl5l 8

Class

public class LinkedBinaryTree<E extends Comparable<E>>
implements TreeInterface<E> {

protected Node .

protected int size;
protected Node<E> root;

Class name violates Encapsulation!

csl5l 0

Insertion

e smaller to the left, bigger to the right

csl51

Following this pattern creates a “Binary Search Tree”

10

size() without size

e Size (number of nodes) of tree is ¥
e Sjze Of I‘Ight SUbtree pIUS — Its recursive!!!

e size of left subtree plus l
o1

public int size() {
return sizeAltUtil(root);
}

private int sizeAltUtil(Node<E> treepart) {
if (treepart == null)
return 0;
return sizeAltUtil(treepart.right) +
sizeAltUtil(treepart.right) +
1;

csl5l 11

Height / maxDepth

Again, using a recursive helper method

@Override
public int height()
{

return maxDepthUtil(root, 1);
I3

int maxDepthUtil(Node n, int depth) {
e)

CS206 12

contains

e returns true if found in the tree, false
otherwise

e Assumes / requires Binary search tree

cslsl 13

Contains Algorithm

e compare with root of current subtree
o root is empty — return false
o root == element — return true
o root < element — recurse on right child
o root > element - recurse on left child

o Comparisons are assumed to be done using
Comparable interface (ie, the compareTo method)

o <E extends Comparable<E>>

csl5l1 14

Pseudo Code

findRec (root, key):

1f root == null:
return false
1f root.key == key:

return true
1f root.key > key:

return findRec (root.left, key)
else

return findRec (root.right, key)

csl5l 15

Contains Code
e Write using a recursive helper method

public boolean contains(E element) {
if (root==null) return false;
return containsUtil(root, element) !'=null;

}

private Node containsUtil(Node treepart, E toBeFound) {

w b

live write

csl5l 16

Unordered Contains

e Suppose that you did not know relation
among children (you do NOT have a binary
search tree)

e S0 thing being looked for could be either
left or right

e How would you change containsUtil
function

e \Would a tree be a useful structure in
this case?

cslsl 17

insert

e void insert (E element);

e new node is always inserted as a leaf

e inserts to
o left subtree if element is smaller than subtree root
o right subtree if larger

o Pre-case: if root=null then root=new Node

public void insert(E element) {
if (root==null) {
root=new Node<E>(element);
size = 1;
} else
insertUtil(root, element);

csl5l 18 Lecl3

Groups

e Draw binary search trees for data received from left to
righto

e 4,5,6,49,43,31,19, 10, 11, 8, 17
e 17,31, 8, 19, 43, 11, 5, 49, 10, 6, 4

e Write insertUtil

private void insertUtil(Node treepart, E toBeAdded) {
. t

csl5l 19 Lecl3

Traversals / Printing

11111

Postorder traversal

public void printPostOrder() {
iPrintPostOrder(root, 0);
System.out.println();

}

private void iPrintPostOrder(Node treePart, int depth) {
if (treePart==null) return;
iPrintPostOrder(treePart.left, depth+1);
iPrintPostOrder(treePart.right, depth+1);
System.out.print(" ["+treePart.payload+","+depth+"]1");

cslsl 21

Remove

e boolean remove (E element) ;

e returns true if element existed and was
removed and false otherwise
e Cases
o element not in tree
o element is a leaf
o element has one child
o element has two children

cslsl 22 Lecl4

| eaf

e Just delete

(15 (15
/ Y ,

—¥ —¥

':: l?) (20 Delete (18) (l?) (20
¥ ¥ s N ‘

G) (o) (o) ()) (n) (29)

cslsl 23 Lecl4

One child

e Replace with child — skip over like in linked
list

(e (15)
\ / \.

i 3 R K

(10 (20 (10 (20)
N N\ Delete (25) . N\

(s) (12) (18) (25 (8) (12) (18) (%)

) -

& © Ge) (1)

cslsl 24 Lecl4

Two Children

e Replace with in-order predecessor or in-
order successor

e in-order predecessor
o rightmost child in left subtree
o max-value child in left subtree

e in-order successor
o leftmost child in right subtree
o min-value child in right subtree

cslsl 25 Lecl4

Replace with Predecessor

\‘_ Delete (20) _’ Ne—

o) K > (10 (K

(19) in-order
J predecessor

node

cslsl

26 Lecl4

Replace with Successor

X P

o Delete 20) N~

(10) lz; 3(% > (10) (30)

n-oraer
successor

O T A S N S
8) (12) Q.?) (@ (9 (@ '1:'1\3) (40)

cslsl 27 Lecl4

Practice

e Given the data:

e 6, 19,

e Draw t
e Write t
e Write t
e What t

10, 5, 43, 31, 11, 8, 4, 17, 49, 36

ne binary tree

ne preorder traversal of your tree
ne postorder traversal of your tree
ne height of the tree?

e If the data were re-arranged, what is the
shorted possible tree?

cslsl

28

