
Nov 9

Sorting
cs151

Midterm 2
average 80.1 std dev 12

Average deduction

1 -3.9

2 -3.3

3 -0.5

4 -4

5 -1.2

6 -2.7

7 -1.8

8 -2.1

Time

80 minutes + 20 for startup/submit

4 people ran more than 10 minutes
long

 Handling

Sorting

• public Comparable[] sort(Comprable[] arra)

• change the order of the items in arra

• All examples will use integers but same statements apply to any Comparable
object

• ideally, do this “in place”.

• That is do not use any extra memory

• First 3 sort techniques we have already discussed

Sorting
Offer N followed by Poll N is sorting!!!!

• PQ on unordered == Selection Sort
• PQ on ordered == Insertion Sort
• PQ on Heap == Heap Sort

CS151 Lec16

Selection Sort
• Selection-sort:
▫ in place algorithm given an array with N items:

▫ step 1: find the min from 0..(N-1) in array and swap with item in
position 0

▫ step 2: find min from 1..(N-1) in array and swap with item in
position 1.

▫ etc

• priority queue implemented with an unsorted array / arrayList / …
• Time:

• O(n2)
• In terms of priority Q, can split this into two phases

• insertion == O(N)
• polling == O(N2)

5

CS151

Selection Sort — Example

6

Phase 1 Inserting Inserting

a 7 (7) 1

b 4 [7,4] 1

…

g [7,4,8,2,5,3,9]

Phase 2 Polling

a [2] [7,4,8,5,3,9] search=4, shift=3

b [2,3] [7,4,8,5,9] search=5, shift=1

c [2,3,4] [7,8,5,9] search=2 shift=3

d [2,3,4,5] [7,8,9] search=3, shift=1

e [2,3,4,5,7] [8,9] search=1, shift=2

f [2,3,4,5,7,8] [9] search=1, shift=1

g [2,3,4,5,7,8,9] [] search=1

CS151 Lec16

Insertion Sort
• Insertion-sort

• in-place algorithm
▫ public Comparable[] sort(Comprable[] arra)

• Step 0: start with item in position 0. Now the items in positions 0..0 are sorted
• Step 1: look at item in position 1. Compare it to item in 0. If p1 is smaller, then swap.

the items in position 0..1 are sorted with respect to each other
• Step 2: determine where item in p2 should go in sorted list 0..N. If needed, For instance,

bigger than 0 but smaller than 1. Make a space: save p1 into tmp. Shifting p1 into p2.
Then put tmp into p1. Now the item in 0..2 are sorted.

• Step N:

• Priority queue implemented with a sorted array/ ArrayList / …

• Time:

• O(n2)

• In terms of PQ

• Add:O(n2)

• Remove: O(n)

• Generally faster than selection sort

7

CS151 Lec16

Example

8

Phase 1 — Inserting
 (a) 7 (7)
 (b) 4 (4,7)
 (c) 8 (4,7,8)
 (d) 2 (2,4,7,8)
 (e) 5 (2,4,5,7,8)
 (f) 3 (2,3,4,5,7,8)
 (g) 9 (2,3,4,5,7,8,9)
Phase 2 — polling
 (a) (2) (3,4,5,7,8,9)
 (b) (2,3) (4,5,7,8,9)

 (g) (2,3,4,5,7,8,9) ()

CS151 Lec16

Heap Sort

• Heap-sort:
▫ Insertion — no more than log2(n) steps per insertion
▫ Deletion — no more than log2(n) steps per deletion

• priority queue is implemented with a heap

• Time:

• Add:O(n * log2(n)) — doable in O(n).

• Remove: O(n * log2(n))

• Note: with a lot of work can do this without an additional
array.

9

CS151 Lec16

Example

10

Phase 1 — Inserting
 (a) 7 (7)
 (b) 4 (4,7)
 (c) 8 (4,7,8)
 (d) 2 (2,4,8,7)
 (e) 5 (2,4,8,7,5)
 (f) 3 (2,4,3,7,5,8)
 (g) 9 (2,4,3,7,5,8,9)
Phase 2 — polling
 (a) (2) (3,4,7,5,8,9)
 (b) (2,3) (4,5,7,9,8)

 (g) (2,3,4,5,7,8,9) ()

Timing
size selection Insertion Insertion

(improved)
Heap

1000 16 15 11 2
2000 8 12 26 3
4000 24 23 20 5
8000 96 95 81 10

16000 370 378 315 17
32000 1585 1359 1218 36
64000 5771 5590 4605 77

128000 23087 21547 19849 161
256000 345
512000 1128

1024000 1973
2048000 3225
4096000 7577
8192000 18586

10000==1 second

anything below 1000  
is very noisy

CS206 Lec20

Divide-and-Conquer

• Divide – the problem (input) into smaller
pieces

• Conquer – solve each piece individually
• usually recursively

• Combine – the piecewise solutions into a
global solution (if needed)

12

CS206 Lec20

Merge Sort

• Sort a sequence of numbers ,
• Base case: , then it’s already sorted
• General

▫ divide: split into two halves, each of size (

and)

▫ conquer: sort each half (by calling mergeSort
recursively)

▫ combine: merge the two sorted halves into a single
sorted list

𝐴 |𝐴 | = 𝑛
|𝐴 | = 1

𝐴
𝑛
2 ⌊ 𝑛

2 ⌋
⌈ 𝑛

2 ⌉

13

CS206 Lec20

Example

14

CS206 Lec20

Algorithm

mergeSort(S):

 if S.size() <= 1 return

 else

 s1 = S[0,n/2]

 s2 = S[n/2+1,n-1]

 mergeSort(s1)

 mergeSort(s2)

 S = merge(s1, s2)

15

Selection Sort In-Place

• Given an array named toSort

• loc=0

• While loc < toSort.length-2

• currentBestLoc = loc

• for fnd=loc+1 upto toSort.length

• if toSort[fnd] better than toSort[currentBestLoc]

• currentBestLoc = fnd

• if currentBestLoc != loc

• swap items at currentBestLoc and Loc

• loc = loc + 1

Insertion Sort — In Place

• Given an array toSort

• for loc=1 upto toSort.length

• p=0

• while tosort[p] better than toSort[loc] and p<loc

• p++

• tmp=toSort[loc]

• for mm=loc downto p+1

• mm[loc]=mm[loc-1]

• mm[p]=tmp

