
Priority Queues
cs151

Priority Queue

• A queue that maintains order of elements according to
some priority

• Contrast to Queue which is FiFo

• PriorityQueues are about the order in which
things are removed, NOT the way in which they
are stored.

• the items may or may not be sorted, or otherwise
arranged.

• This statement applies to stack and queues also, it is
just convenient in those cases to arrange data to
make retrieval easy

2

Complexity Analysis

Unordered Ordered

(using SAL) Heap Based

offer O(1) O(n) O(lg n)

peek O(n) O(1) O(1)

poll O(n) O(1) O(lg n)

Unordered PQ == Selection Sort

Ordered PQ = Insertion Sort

Binary Heap

• A heap is a “binary tree” storing keys at
its nodes and satisfying:

▫ heap-order: for every internal node other

than root,

▫ Heap is filled from top down and within a

level from left to right.

◆at depth , the leaf nodes are in the leftmost

positions

◆last node of a heap is the rightmost node of max

depth

𝑣
𝑘𝑒𝑦(𝑣) ≥ 𝑘𝑒𝑦(𝑝𝑎𝑟𝑒𝑛𝑡(𝑣))

h

4

Binary Tree — terms

5

Term Definition

Node A part of a tree.

Parent A node that has children

Child A node that has parents. Child nodes have exactly one parent

Binary Tree A structure of nodes such that parent nodes have at at most two
children

Root The node in a tree that has no parent.

Leaf Any node that has no children

Height The maximum distance from a the root node to a leaf.

Subtree The part of a tree whose root is a given node

2

65

79 1z

Height of a Heap

• A binary heap storing n keys has a
height of O(log2n)

• This is NOT true for general binary trees

6

1

2

2h−1

1

keys
0

1

h−1

h

depth

Insertion into a Heap

• Insert as new last node

• Need to restore heap order

7

2

65

79

insertion node

z

2

65

79 1z

Lec16

Upheap

• Restore heap order

▫ swap upwards

▫ stop when finding a  

smaller parent

▫ or reach root

• 𝑂(𝑙𝑜𝑔𝑛)

8

2

65

79 1z

2

15

79 6z

1

25

79 6z

Poll

• Removing the root of the heap

▫ Replace root with last node

▫ Remove last node

▫ Restore heap order

9

2

65

79

last node

w

7

65

9
w

new last node

Downheap

• Restore heap order

▫ swap downwards

▫ swap with smaller child

▫ stop when finding  

larger children

▫ or reach a leaf

• 𝑂(𝑙𝑜𝑔𝑛)

10

7

65

9
w

5

67

9
w

Heaps are built on Arrays

• Parent from child

• suppose child is at location childLoc in array

• parentLoc = (childLoc-1)/2

• Child from Parent

• suppose parent is at parentLoc in array

• leftChild = parentLoc*2+1

• rightChild = parentLoc*2+2

11

0 1 2 3 4 5 6 7

1 5 2 9 7 6

• Parent from child

• child at loc 4 (value 7)

• parent is at (4-1)/2 = 1 (value 5)

• Child from Parent

• parent at loc 2 (value 6)

• leftChild =2*2+1 = 5 (value 1)

• rightChild = 2*2+2 = 6 (value — not used)

Locations of Parents and children are in strict mathematical relationship

Add to Heap here
End of

Midterm 2

2

65

79 1z

Priority Queue using Heaps
startup

public class PriorityQHeap<K extends Comparable<K>, V> extends AbstractPriorityQueue<K, V>

{

 private static final int CAPACITY = 1032;

 private Pair<K,V>[] backArray;

 private int size;

 public PriorityQHeap() {

 this(CAPACITY);

 }

 public PriorityQHeap(int capacity) {

 size=0;

 backArray = new Pair[capacity];

 }

 @Override

 public int size()

 {

 return size;

 }

 @Override

 public boolean isEmpty()

 {

 return size==0;

 }

Heap Insertion
Priority Queue offer method

public boolean offer(K key, V value)

 {

 if (size>=(backArray.length-1))

 return false;

 // put new item in at end data items

 int loc = size++;

 backArray[loc] = new Pair<K,V>(key, value);

 // up heap

 int upp = (loc-1)/2; //the location of the parent

 while (loc!=0) {

 if (0 > backArray[loc].compareTo(backArray[upp])) {

 // swap and climb

 Pair<K,V> tmp = backArray[upp];

 backArray[upp] = backArray[loc];

 backArray[loc] = tmp;

 loc = upp;

 upp = (loc-1)/2;

 }

 else

 {

 break;

 }

 }

 return true;

 }

1. Ensure there is room — if not return false

2. Add new items to end of heap (low and left viewed graphically)

first unoccupied viewed array-wise

3. Repeat until at root

1. Compare with parent

2. If greater, swap and continue

3. If less stop

4. return true

Peek and Poll

 @Override

 public V poll() {

 if (isEmpty())

 return null;

 Entry<K,V> tmp = backArray[0];

 removeTop();

 return tmp.theV;

 }

 @Override

 public V peek() {

 if (isEmpty())

 return null;

 return backArray[0].theV;

 }

Remove head item from Heap
 private void removeTop()

 {

 backArray[0] = backArray[size-1];

 backArray[size-1]=null;

 size--;

 int upp=0;

 while (true)

 {

 int dwn;

 int dwn1 = upp*2+1;

 if (dwn1>size) break;

 int dwn2 = upp*2+2;

 if (dwn2>size) { dwn=dwn1;

 } else {

 int cmp = backArray[dwn1].compareTo(backArray[dwn2]);

 if (cmp<=0) dwn=dwn1;

 else dwn=dwn2;

 }

 if (0 > backArray[dwn].compareTo(backArray[upp]))

 {

 Pair<K,V> tmp = backArray[dwn];

 backArray[dwn] = backArray[upp];

 backArray[upp] = tmp;

 upp=dwn; }

 else { break; } } }

General Removal

• swap with last node

• delete last node

• may need to upheap or downheap

16

Heap Insertion
Priority Queue offer method

public boolean offer(K key, V value)

 {

 if (size>=(backArray.length-1))

 return false;

 // put new item in at end data items

 int loc = size++;

 backArray[loc] = new Pair<K,V>(key, value);

 // up heap

 int upp = (loc-1)/2; //the location of the parent

 while (loc!=0) {

 if (0 > backArray[loc].compareTo(backArray[upp])) {

 // swap and climb

 Pair<K,V> tmp = backArray[upp];

 backArray[upp] = backArray[loc];

 backArray[loc] = tmp;

 loc = upp;

 upp = (loc-1)/2;

 }

 else

 {

 break;

 }

 }

 return true;

 }

