
Priority Queues
cs151

Priority Queue

• A queue that maintains order of elements according to
some priority

• Contrast to Queue which is FiFo

• PriorityQueues are about the order in which
things are removed, NOT the way in which they
are stored.

• the items may or may not be sorted, or otherwise
arranged.

• This statement applies to stack and queues also, it is
just convenient in those cases to arrange data to
make retrieval easy

2

Complexity Analysis

Unordered Ordered
(using SAL) Heap Based

offer O(1) O(n) O(lg n)

peek O(n) O(1) O(1)

poll O(n) O(1) O(lg n)

Unordered PQ == Selection Sort

Ordered PQ = Insertion Sort

Binary Heap

• A heap is a “binary tree” storing keys at
its nodes and satisfying:
▫ heap-order: for every internal node other

than root,
▫ Heap is filled from top down and within a

level from left to right.
◆at depth , the leaf nodes are in the leftmost

positions
◆last node of a heap is the rightmost node of max

depth

𝑣
𝑘𝑒𝑦(𝑣) ≥ 𝑘𝑒𝑦(𝑝𝑎𝑟𝑒𝑛𝑡(𝑣))

h

4

Binary Tree — terms

5

Term Definition

Node A part of a tree.

Parent A node that has children

Child A node that has parents. Child nodes have exactly one parent

Binary Tree A structure of nodes such that parent nodes have at at most two
children

Root The node in a tree that has no parent.

Leaf Any node that has no children

Height The maximum distance from a the root node to a leaf.

Subtree The part of a tree whose root is a given node

2

65

79 1z

Height of a Heap

• A binary heap storing n keys has a
height of O(log2n)

• This is NOT true for general binary trees

6

1

2

2h−1

1

keys
0

1

h−1

h

depth

Insertion into a Heap

• Insert as new last node
• Need to restore heap order

7

2

65

79

insertion node

z

2

65

79 1z

Lec16

Upheap

• Restore heap order
▫ swap upwards
▫ stop when finding a

smaller parent
▫ or reach root

• 𝑂(𝑙𝑜𝑔𝑛)

8

2

65

79 1z

2

15

79 6z

1

25

79 6z

Poll

• Removing the root of the heap
▫ Replace root with last node
▫ Remove last node
▫ Restore heap order

9

2

65

79

last node

w

7

65

9
w

new last node

Downheap

• Restore heap order
▫ swap downwards
▫ swap with smaller child
▫ stop when finding

larger children
▫ or reach a leaf

• 𝑂(𝑙𝑜𝑔𝑛)

10

7

65

9
w

5

67

9
w

Heaps are built on Arrays

• Parent from child

• suppose child is at location childLoc in array

• parentLoc = (childLoc-1)/2

• Child from Parent

• suppose parent is at parentLoc in array

• leftChild = parentLoc*2+1

• rightChild = parentLoc*2+2

11

0 1 2 3 4 5 6 7

1 5 2 9 7 6

• Parent from child

• child at loc 4 (value 7)

• parent is at (4-1)/2 = 1 (value 5)

• Child from Parent

• parent at loc 2 (value 6)

• leftChild =2*2+1 = 5 (value 1)

• rightChild = 2*2+2 = 6 (value — not used)

Locations of Parents and children are in strict mathematical relationship

Add to Heap here
End of

Midterm 2

2

65

79 1z

Priority Queue using Heaps
startup

public class PriorityQHeap<K extends Comparable<K>, V> extends AbstractPriorityQueue<K, V>
{

 private static final int CAPACITY = 1032;
 private Pair<K,V>[] backArray;
 private int size;

 public PriorityQHeap() {
 this(CAPACITY);
 }

 public PriorityQHeap(int capacity) {
 size=0;
 backArray = new Pair[capacity];
 }
 @Override
 public int size()
 {
 return size;
 }

 @Override
 public boolean isEmpty()
 {
 return size==0;
 }

Heap Insertion
Priority Queue offer method

public boolean offer(K key, V value)
 {
 if (size>=(backArray.length-1))
 return false;
 // put new item in at end data items
 int loc = size++;
 backArray[loc] = new Pair<K,V>(key, value);
 // up heap
 int upp = (loc-1)/2; //the location of the parent
 while (loc!=0) {
 if (0 > backArray[loc].compareTo(backArray[upp])) {
 // swap and climb
 Pair<K,V> tmp = backArray[upp];
 backArray[upp] = backArray[loc];
 backArray[loc] = tmp;
 loc = upp;
 upp = (loc-1)/2;
 }
 else
 {
 break;
 }
 }
 return true;
 }

1. Ensure there is room — if not return false
2. Add new items to end of heap (low and left viewed graphically)

first unoccupied viewed array-wise
3. Repeat until at root

1. Compare with parent
2. If greater, swap and continue
3. If less stop

4. return true

Peek and Poll

 @Override
 public V poll() {
 if (isEmpty())
 return null;
 Entry<K,V> tmp = backArray[0];
 removeTop();
 return tmp.theV;
 }

 @Override
 public V peek() {
 if (isEmpty())
 return null;
 return backArray[0].theV;
 }

Remove head item from Heap
 private void removeTop()
 {
 backArray[0] = backArray[size-1];
 backArray[size-1]=null;
 size--;
 int upp=0;
 while (true)
 {
 int dwn;
 int dwn1 = upp*2+1;
 if (dwn1>size) break;
 int dwn2 = upp*2+2;
 if (dwn2>size) { dwn=dwn1;
 } else {
 int cmp = backArray[dwn1].compareTo(backArray[dwn2]);
 if (cmp<=0) dwn=dwn1;
 else dwn=dwn2;
 }
 if (0 > backArray[dwn].compareTo(backArray[upp]))
 {
 Pair<K,V> tmp = backArray[dwn];
 backArray[dwn] = backArray[upp];
 backArray[upp] = tmp;
 upp=dwn; }
 else { break; } } }

General Removal

• swap with last node
• delete last node
• may need to upheap or downheap

16

Heap Insertion
Priority Queue offer method

public boolean offer(K key, V value)
 {
 if (size>=(backArray.length-1))
 return false;
 // put new item in at end data items
 int loc = size++;
 backArray[loc] = new Pair<K,V>(key, value);
 // up heap
 int upp = (loc-1)/2; //the location of the parent
 while (loc!=0) {
 if (0 > backArray[loc].compareTo(backArray[upp])) {
 // swap and climb
 Pair<K,V> tmp = backArray[upp];
 backArray[upp] = backArray[loc];
 backArray[loc] = tmp;
 loc = upp;
 upp = (loc-1)/2;
 }
 else
 {
 break;
 }
 }
 return true;
 }

