Recursion — Pt 3

cs206 — April9



Do Maze!!



Recursion and Backtracking

* All problems considered so far progress steadily towards an answer.
* Consider a maze. Sometimes you need to “backtrack”.
* RECURSION makes backtracking easy!
* Idea:
* 1. Somehow make a copy of where you are,
* 2. Try to go forward one step.
* A.If success,
* Mark your step on the copy.
* return to step 1

* B. If failure

* throw out copy

* go some other direction using your original

* Twiddle

* especially with mazes mark places you have been so you do not retry failed paths



N Queens problem

* Place N queens on an NxN chessboard such that no queen can take another
* Strategy:
* onrow N
* move across columns trying a spot for OK
* if found a spot, then recur with N+1
* if have checked everything in a row and there is no place that is OK
* backtrack

» undo placement of queen in row N-1 and continue across that row



N Queens

setup

public class NQueens {
private char[][] board;
private int size = 0;

public NQueens(int siz) {

* board justa2d
size = s1z;
array Of CharS board = new char[siz][siz]:

for (int i = 0; i < siz; i++) {
for (int j = 0; j < siz; j++) {
]

» will do recursion poard 1] [j] = '.';
with a private ,
utility function }

private void showBoard() {
for (int r = 0; r < size; r++) {
for (int ¢ = 0; c < size; c++) {
System.out.print(board[r][cl);
s

System.out.print("\n");
s

public void doQueens() {
doQueensUtil(0);
}



N Queens

recursion
private boolean doQueensUtil(int roww) A
* base case: if (roww >= size)
return true;
* the row being asked to consider is off board if (rowOccupied(roww))
return doQueensUtil(roww + 1):
. . for (int col = 0; col < size; col++) {
return true; board[roww] [col] = 'Q';
. i th if (OKBoard()) {
In the row boolean v = doQueensUtil(roww + 1);
if (v)
* go across every column return true:
: } else {
* put queen in a column System.out.println("NOT OK"):
showBoard();
* check if that is OK System.out.println("NOT OK" + roww + " " + col)
¥
* if it is, go to recur to next row \ board[roww] [col] = '-';
* if found solution return true; , return false;

* if NOT OK, remove queen from column

* if cannot find a place to put a queen, return
false






Sudoku

Puzzle solve(Puzzle p, int xloc, int yloc)
if isSolved(p)
return p
if not isSolvable(p)
return null
if (yloc>9)
* Solvable using really xLoc++
stupid recursion _Yloc=0
if (xloc>9)
return null
if (p(xloc, yloc) != 0)
return solve(p, xloc, yloc+1)
else
legalmoves = legalmovesat(p, xloc, yloc)
foreach legalmove : legalmoves
set p(xloc, yloc) to legalmove
np = solve(copy(p), xloc, yloc+l)
if (np'!'=null)
return np
return null



Sudoku

Puzzle
at its simplest this could be just a 2d array (specifically 9x9) of int

boolean isSolved(Puzzle p)
return true 1f the puzzle 1s completely solved false otherwise

boolean isSolvable(Puzzle p)
return true 1f the puzzle still might be solvalble, false otherwise

List legalmovesat(Puzzle p, int xloc, int yloc)
return the list of numbers that can be legally put into the position given
the current board

Puzzle copy(Puzzle p)

return a new instance of puzzle that 1s an exact copy of the provided
puzzle. Importantly, making a change in the copy should have no effect on the
original.



