
cs151 Lec04

CS151

Exceptions  

Analysis

1



cs151

Exceptions
• Unexpected events during execution 

▫ unavailable resource 
▫ unexpected input 
▫ logical error 

• In Java, exceptions are objects  

• 2 options with an Exception 

• “Throw” it 

• this says that the exception must be handled 
elsewhere  

• “Catch” it.  

• handle the problem here and now

2



cs151

Catching Exceptions
• Exception handling 
• try-catch 

• An exception is  
caught by having 
control transfer to  
the matching catch block 

• If no exception occurs, all catch blocks 
are ignored 

3



cs151

Throwing Exceptions
• An exception is thrown  

▫ implicitly by the JVM because of errors 
▫ explicitly by code 

▫ If your code throws an exception it must 
catch that exception somewhere else 

• Method signature – throws 
public static int parseInt(String 
s) throws NumberFormatException

4



cs151

Exceptions Example

5

public class ExceptThrower { 
    public int divv(int numer, int denom) { 
        try { 
            return numer / denom; 
        } catch (ArithmeticException e) { 
            System.err.println("Caught in Func " + e); 
        } 
        return 0; 
    } 
    public int divvTh(int numer, int denom) throws ArithmeticException{ 
       return numer / denom; 
    } 
    public static void main(String[] args) { 
        ExceptThrower except = new ExceptThrower(); 
        except.divv(2, 0); 
        try { 
            except.divvTh(4,0); 
        } catch (ArithmeticException ae) { 
            System.err.println("Caught in Main " + ae); 
        }}} 



cs151

Java’s Exception Hierarchy

6



cs151

Running Time

• The run time of a program depends on 
▫ efficiency of the algorithm/implementation 
▫ size of input 
▫ what else? 

• The running time typically grows with input 
size 

• How do you measure running time? 
• CPU usage? 

• Reliability?
7



cs151

Timing Code

8

public class Timer { 
    private static final int REPS = 2; // number of trials 
    private static final int NANOS_SEC = 1000000000; // nanosec per sec 

    public double doSomething(int[] data) { 
        double k = 0; 
        for (long i = 0; i < data.length; i++) { 
            for (long j = 0; j < data.length; j++) { 
                k += Math.sqrt(i * j); 
            } 
        } 
        return k; 
    } 

    public static void main(String[] args) { 
        Timer timer = new Timer(); 
        long data[] = new long[REPS]; 
        for (int j = 1000; j < 65000; j = j*2) { 
            for (int i = 0; i < REPS; i++) { 
                long start = System.nanoTime(); 
                timer.doSomething(new int[j]); 
                long finish = System.nanoTime(); 
                data[i] = (finish - start); 
                System.out.println(String.format("%d %.4f", j, (double) (finish - start) / 
NANOS_SEC)); 
              }}}}



cs151

Experimental Studies

• Write a program 
implementing the 
algorithm 

• Run it with different input 
sizes and compositions 

• Record times and plot 
results

9

Ti
m

e 
(s

ec
on

ds
)

0.0000

0.2500

0.5000

0.7500

1.0000

N (size of input data)
0 2000 4000 6000 8000 10000



cs151

Limitation of Experiments

• You have to implement the algorithm 
• You have to generate inputs that represent 

all cases 
• Comparing two algorithms requires exact 

same hardware and software 
environments 
• Even then timing is hard 

• multiprocessing 
• file i/o

10



cs151

Theoretical Analysis

• Use a high-level description of algorithm 
▫ pseudo-code 

• Running time as a function input size,  

• Ignore other details of the input 

• Independent of the hardware/software 
environment

𝑛

11



cs151

Primitive Operations

• Basic computations 
• * / + - 

• Comparisons 
• ==, >, < 

• Setting 
•  x=y 

• Assumed to take constant time 
▫ exact constant is not important 
▫ Because constant is not important, can do more than 

just this list
12



cs151

Example 
Time required to compute an average

13

public double allAverage(long[] data){ 
        double res = 0; 
        for (int i=0; i<data.length; i++) 
        { 
            res = res+data[i]; 
        } 
        return res/data.length; 
    } 
public double posAverage(long[] data) { 
        double res = 0; 
        long pCount = 0; 
        for (int i=0; i<data.length; i++) { 
            long datum=data[i]; 
            if (0<datum) { 
                res = res+datum; 
                pCount=pCount+1; 
            } 
        } 
        return res/pCount; 
    } 

How many 
operations? (In 
terms of the length 
of data)



cs151

Estimate Running Time 

• allAverage executes 5N+3 operations 
• posAverage executes a total of 9N+3 primitive 

operations in the worst case, 5N+3 in the best case.  
• Let a be the fastest primitive operation time, b be 

the slowest primitive operation time 

• Let  denote the worst-case time of allAverage. 
Then: 
a(5n+3) < T(n) < b(5n+3) 

• is bounded by two functions  

• both are linear in terms of 

T(𝑛)

T(𝑛) 
𝑛

14



cs151

Growth Rate of Running Time

• Changing the hardware/ software 
environment  
▫ Affects  by a constant factor, but 
▫ Does not alter the growth rate of  

• The linear growth rate of the running 
time is an intrinsic property of both 
algorithms.

T(𝑛)
T(𝑛)

T(𝑛) 

15



cs151

Comparison of Two Algorithms

• insertion sort:  

• merge sort:  

• suppose n=108 
▫ insertion sort:  

108*108/4 = 2.5*1015 

▫ merge sort:  
108*26*2 = 5.2* 109 

▫ or merge sort can be 
expected to be about 106 
times faster 

▫ so if merge sort takes 10 
seconds then insertion 
sort takes about 100 days

𝑛2/4
2𝑛𝑙𝑔𝑛

16



cs151

Asymptotic Notation

• Provides a way to simplify analysis 

• Allows us to ignore less important 
elements 
▫ constant factors 

• Focus on the largest growth of  
• Focus on the dominant term

𝑛

17



cs151

How do these functions grow?

•

18



cs151

Big O
• Constant factors are ignored 

• Upper bound on time 

• Goal is to have an easily understood 
summary of algorithm speed 

• not implementation speed

19



cs151

Sublinear Algorithms
• O(1) 

• runtime does not depend on input 
 

• O(lg2n) 

• algorithm constantly halves input

20



cs151

Linear Time Algorithms:𝑂(𝑛)

• The algorithm’s running time is at most 
a constant factor times the input size 

• Process the input in a single pass 
spending constant time on each item 
▫ max, min, sum, average, linear search 

• Any single loop

21



cs151

 time𝑂(𝑛𝑙𝑜𝑔𝑛)
Frequent running time in cases when 

algorithms involve:  

• Sorting 

• only the “good” algorithms 

• e.g. quicksort, merge sort, …

22



cs151

Quadratic Time: 𝑂(𝑛2)

• Nested loops, double loops 

• The doSomething algorithm 

• Processing all pairs of elements 

• The less-good sorting algorithms 

• e.g., insertion sort

23



cs151

Slow!!!! Times

• polynomial time:  
• All subsets of elements of size  

• exponential time:  

• All subsets of  elements (power set) 

• factorial time:  
• All permutations of  elements

𝑂(𝑛𝑘)
𝑛  𝑘

𝑂(2𝑛)
𝑛

𝑂(𝑛!)
𝑛

24



cs151

Algorithm Run Times

25

N log(n) n n log(n) n*n n*n*n n!

10 3 10 33 100 1000 10^5

100 7 100 664 10000 10^6 10^94

1000 10 1000 9966 10^6 10^9 10^1435

10000 13 10000 132877 10^8 10^12 10^19355

100000 17 100000 1660964 10^10 10^15 10^(10^6)



cs151

Analyzing StuffBag

• add 

• remove one 

• count 

• remove all of X 

• Can these times be improved? 

• at what cost?

26


