
cs151 Lec04

CS151

Exceptions

Analysis

1

cs151

Exceptions
• Unexpected events during execution

▫ unavailable resource

▫ unexpected input

▫ logical error

• In Java, exceptions are objects

• 2 options with an Exception

• “Throw” it

• this says that the exception must be handled
elsewhere

• “Catch” it.

• handle the problem here and now

2

cs151

Catching Exceptions
• Exception handling

• try-catch

• An exception is  
caught by having 
control transfer to  
the matching catch block

• If no exception occurs, all catch blocks
are ignored 

3

cs151

Throwing Exceptions
• An exception is thrown

▫ implicitly by the JVM because of errors

▫ explicitly by code

▫ If your code throws an exception it must
catch that exception somewhere else

• Method signature – throws

public static int parseInt(String
s) throws NumberFormatException

4

cs151

Exceptions Example

5

public class ExceptThrower {

 public int divv(int numer, int denom) {

 try {

 return numer / denom;

 } catch (ArithmeticException e) {

 System.err.println("Caught in Func " + e);

 }

 return 0;

 }

 public int divvTh(int numer, int denom) throws ArithmeticException{

 return numer / denom;

 }

 public static void main(String[] args) {

 ExceptThrower except = new ExceptThrower();

 except.divv(2, 0);

 try {

 except.divvTh(4,0);

 } catch (ArithmeticException ae) {

 System.err.println("Caught in Main " + ae);

 }}}

cs151

Java’s Exception Hierarchy

6

cs151

Running Time

• The run time of a program depends on

▫ efficiency of the algorithm/implementation

▫ size of input

▫ what else?

• The running time typically grows with input
size

• How do you measure running time?

• CPU usage?

• Reliability?
7

cs151

Timing Code

8

public class Timer {

 private static final int REPS = 2; // number of trials

 private static final int NANOS_SEC = 1000000000; // nanosec per sec

 public double doSomething(int[] data) {

 double k = 0;

 for (long i = 0; i < data.length; i++) {

 for (long j = 0; j < data.length; j++) {

 k += Math.sqrt(i * j);

 }

 }

 return k;

 }

 public static void main(String[] args) {

 Timer timer = new Timer();

 long data[] = new long[REPS];

 for (int j = 1000; j < 65000; j = j*2) {

 for (int i = 0; i < REPS; i++) {

 long start = System.nanoTime();

 timer.doSomething(new int[j]);

 long finish = System.nanoTime();

 data[i] = (finish - start);

 System.out.println(String.format("%d %.4f", j, (double) (finish - start) /
NANOS_SEC));

 }}}}

cs151

Experimental Studies

• Write a program
implementing the
algorithm

• Run it with different input
sizes and compositions

• Record times and plot
results

9

Ti
m

e
(s

ec
on

ds
)

0.0000

0.2500

0.5000

0.7500

1.0000

N (size of input data)
0 2000 4000 6000 8000 10000

cs151

Limitation of Experiments

• You have to implement the algorithm

• You have to generate inputs that represent

all cases

• Comparing two algorithms requires exact

same hardware and software
environments

• Even then timing is hard

• multiprocessing

• file i/o

10

cs151

Theoretical Analysis

• Use a high-level description of algorithm

▫ pseudo-code

• Running time as a function input size,

• Ignore other details of the input

• Independent of the hardware/software
environment

𝑛

11

cs151

Primitive Operations

• Basic computations

• * / + -

• Comparisons

• ==, >, <

• Setting

• x=y

• Assumed to take constant time

▫ exact constant is not important

▫ Because constant is not important, can do more than

just this list
12

cs151

Example

Time required to compute an average

13

public double allAverage(long[] data){

 double res = 0;

 for (int i=0; i<data.length; i++)

 {

 res = res+data[i];

 }

 return res/data.length;

 }

public double posAverage(long[] data) {

 double res = 0;

 long pCount = 0;

 for (int i=0; i<data.length; i++) {

 long datum=data[i];

 if (0<datum) {

 res = res+datum;

 pCount=pCount+1;

 }

 }

 return res/pCount;

 }

How many
operations? (In
terms of the length
of data)

cs151

Estimate Running Time

• allAverage executes 5N+3 operations

• posAverage executes a total of 9N+3 primitive

operations in the worst case, 5N+3 in the best case.

• Let a be the fastest primitive operation time, b be

the slowest primitive operation time

• Let denote the worst-case time of allAverage.
Then: 
a(5n+3) < T(n) < b(5n+3)

• is bounded by two functions

• both are linear in terms of

T(𝑛)

T(𝑛)
𝑛

14

cs151

Growth Rate of Running Time

• Changing the hardware/ software
environment

▫ Affects by a constant factor, but

▫ Does not alter the growth rate of

• The linear growth rate of the running
time is an intrinsic property of both
algorithms.

T(𝑛)
T(𝑛)

T(𝑛)

15

cs151

Comparison of Two Algorithms

• insertion sort:

• merge sort:

• suppose n=108

▫ insertion sort:  

108*108/4 = 2.5*1015

▫ merge sort:  
108*26*2 = 5.2* 109

▫ or merge sort can be
expected to be about 106
times faster

▫ so if merge sort takes 10
seconds then insertion
sort takes about 100 days

𝑛2/4
2𝑛𝑙𝑔𝑛

16

cs151

Asymptotic Notation

• Provides a way to simplify analysis

• Allows us to ignore less important
elements

▫ constant factors

• Focus on the largest growth of

• Focus on the dominant term

𝑛

17

cs151

How do these functions grow?

•

18

cs151

Big O
• Constant factors are ignored

• Upper bound on time

• Goal is to have an easily understood
summary of algorithm speed

• not implementation speed

19

cs151

Sublinear Algorithms
• O(1)

• runtime does not depend on input 
 

• O(lg2n)

• algorithm constantly halves input

20

cs151

Linear Time Algorithms:𝑂(𝑛)

• The algorithm’s running time is at most
a constant factor times the input size

• Process the input in a single pass
spending constant time on each item

▫ max, min, sum, average, linear search

• Any single loop

21

cs151

 time𝑂(𝑛𝑙𝑜𝑔𝑛)
Frequent running time in cases when

algorithms involve:

• Sorting

• only the “good” algorithms

• e.g. quicksort, merge sort, …

22

cs151

Quadratic Time: 𝑂(𝑛2)

• Nested loops, double loops

• The doSomething algorithm

• Processing all pairs of elements

• The less-good sorting algorithms

• e.g., insertion sort

23

cs151

Slow!!!! Times

• polynomial time:

• All subsets of elements of size

• exponential time:

• All subsets of elements (power set)

• factorial time:

• All permutations of elements

𝑂(𝑛𝑘)
𝑛 𝑘

𝑂(2𝑛)
𝑛

𝑂(𝑛!)
𝑛

24

cs151

Algorithm Run Times

25

N log(n) n n log(n) n*n n*n*n n!

10 3 10 33 100 1000 10^5

100 7 100 664 10000 10^6 10^94

1000 10 1000 9966 10^6 10^9 10^1435

10000 13 10000 132877 10^8 10^12 10^19355

100000 17 100000 1660964 10^10 10^15 10^(10^6)

cs151

Analyzing StuffBag

• add

• remove one

• count

• remove all of X

• Can these times be improved?

• at what cost?

26

