
CS151 Lec01

Intro to Data Structures

CS151

Fall 2021

1

CS151

Course Goals

2

1.Become a better computer scientist
2.Learn about common data structures

1. Implementation
2. How and when to use each

3.Understand Object Oriented program
design and its implementation in Java

4.Become a better Java programmer
5.Develop an understanding of UNIX

CS151 Lec01

Things to Know
• Course website

▫ www.cs.brynmawr.edu/cs151
▫ usually updated before and after each class

▫ lecture notes and code sample will be posted before class
▫ updates after class with revisions, etc

▫ Syllabus
▫ www.cs.brynmawr.edu/cs151/syllabus.html

▫ usually updated on weekend for next week’s material
▫ Homeworks

▫ posted on class web site
▫ Approximately weekly, assigned Thursday.
▫ Typically due on Wednesday before midnight
▫ Help in lab (Park 231) Sunday-Thursday evening

▫ starting next week
▫ Homeworks should trail lectures so you should be able to start immediately.

3

http://www.cs.brynmawr.edu/cs151
http://www.cs.brynmawr.edu/cs151/syllabus.html

CS151 Lec01

More Things to Know

• CS account
▫ You should have gotten email from

ddiaz1@brynmawr.edu

• Lab:
• Park 230
• Tu 2:25 - 3:45
• Lab work may be done in groups!

• I encourage you to do so.
• Software: Java, Visual Studio Code, Unix

4

CS151

Textbook

5

CS151

Data Structure?

• Wikipedia: a data structure is
a data organization, management, and
storage format that enables efficient access
and modification

• We will talk about approximately 8 data
structures

• How to use

• Why to choose this one

• How to implement

6

CS151

Data Structures

• Array
• ArrayList

• it grows and shrinks
• Maps / Hashtables

• going beyond numeric indexes
• Stacks and Queues
• Linked Lists
• Trees
• Graphs

7

CS151

Programming techniques and concepts

• Object oriented programming

• inheritance, generics, …

• Searching

• Sorting

• Recursion

• Asymptotic Analysis

8

CS151

Java

• “Object Oriented” Language

• Data Types

• Base

• fixed set

• Initial lower case letter (e.g. int)

• Objects (Classes)

• User extensible

• Initial capital letter (by convention)

9

CS151 Lec01

Base/Primitive Types

• Primitive types define memory used to
store the data

10

Extant definitions of primitives
subject to change

CS151

Testing max Integer

11

public class BoundTest {
 public static void main(String[] args) {
 System.out.println("MAX:" + Integer.MAX_VALUE + " MIN:" +
Integer.MIN_VALUE);
 BoundTest bt = new BoundTest();
 bt.testInt(1);
 }
 public void testInt(int startingValue) {
 int intV = startingValue;
 for (int jj = 1; jj < 100 && intV > 0; jj++) {
 intV *= 2;
 System.out.println("Pow " + jj + " " + intV);
 }
 for (int jj = 0; jj < 10; jj++) {
 System.out.println("minus " + jj + " " + (intV - jj));
 }
 }
}

CS151

How integers are stored

• Everything is bits
• 0 or 1

• the int type uses 32 bits
with number in base 2

• To show +/- the leftmost
bit
• “sign bit”
• 0—positive
• 1—negative
• “two’s complement”

12

base 10 in bits
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
-8 1000
-7 1001

Suppose you have 4 bits
for a number

CS151 Lec01

Classes and Variables
• A class is a description of what an object stores (its

data) and how it functions
▫ instance variables
▫ methods

▫ Every variable is either a base type or a reference to
an object

• Every object is an instance of a class

• Object names — initial capital

• instances — initial lower case

• camel case thereafter, camelCaseThereAfter

13

CS151 Lec01

Creating and Using Objects

• In Java, a new object is created by using the new
operator followed by a call to a constructor for
the desired class.

• A constructor is a special method that shares the
same name of its class. The new operator returns
a reference to the newly created instance.
• every method other than a construction must

give the type of information it returns
• Almost everything in Java is a class

• More properly, almost all variables in Java
store references to instances of a class

14

CS151

/**
 * A simple class from a simple song
 * Created: Sep 2020
 * @author gtowell
 */
public class Inchworm
{
 //instance variable comment
 private int measurement;
 /**
 * Create a default inchworm. It starts measuring at 1.
 */
 public Inchworm() {
 this.measurement=1;
 }

Lec01

Defining Objects

CS151

 /**
 * Create an inchworm starting at something other than 1.
 * @param startingMeasurement the starting measurement
 */
 public Inchworm(int startingMeasurement) {
 this.measurement = startingMeasurement;
 }
 /**
 * A “copy” constructor. It copies the state of an existing inchworm
 * @param iw the inchworm to be copied
 */
 public Inchworm(Inchworm iw) {
 this.measurement = iw.getMeasurement();
 }
 /**
 * Get accessor for measurement. Get accessors need NOT be commented
 * @return the measurement
 */
 public int getMeasurement() {
 return this.measurement;
 }

Class Part2

16

CS151

 /**
 * Change the measurement by doubling. It is all inchworms can do.
 */
 public void doubleMeasure() {
 this.measurement *= 2;
 }
 /**
 * The toString function. Normally this does not need a comment.
 * @Override indicates that function is defined in ancestor
 */
 @Override
 public String toString() {
 return "The marigold measures " + this.measurement + " inches";
 }
 /**
 * Put the inchworm back in its base state
 */
 public void reset() {
 this.measurement=1;
 }

Class Part3

17

CS151

Class Part4

18

/**
 * Function to be executed at start.
 * @param args NOT used.
 */
 public static void main(String[] args) {
 Inchworm inchworm = new Inchworm();
 inchworm.doubleM();
 System.out.println(inchworm);
 Inchworm inchworm2 = new Inchworm(inchworm);
 inchworm2.doubleM();
 System.out.println(inchworm2 + " " + inchworm);
 }

CS151 Lec01

Access Control Modifiers

• public — all classes may access

• private — access only within that class.

• protected — access only from decendents
• “” (read as package) — access only by classes within

the package
• (I hate significant whitespace)

• The package is generally the code you are working
on.

• packages very useful in large development projects
(>10 people)

• DO NOT use in this course
19

CS151

Static
• When a variable or method of a class is declared

as static, it is associated with the class as a
whole, rather than with each individual instance
of that class.

• Only acceptable use (at least for this course):
• In methods …

• public static void main(String[]
args)

• In variables .. to declare constants
• public static final double
GOLDEN_MEAN =1.61803398875;

20

CS151 Lec01

Casting (of base types)

• Assignment
REQUIRES type
equality

• Use casting to
change type

• Must explicitly cast if
there is a possible
loss of precision

private void trial()
 {
 int x = 5;
 double y = 1.2;
 y = x;
 x = y;

 y = (double) x;
 x = (int) y;
 }

21

CS151 Lec01

.equals: Object Equality

• Do not use ==

• Use == only
when
comparing base
types

• Review your
strings and
String class
methods

22

public class StringEqual {
 public static void main(String[] args) {
 String str1 = new String("one");
 String str2 = new String("one");
 System.out.println("str1==str2: "

+ str1 == str2);
 System.out.println("str1==str2: "

+ (str1 == str2));
 System.out.println("str1.equals(str2): "

+ str1.equals(str2));
 }
}

CS151 Lec01

Wrapper Types

• Most data structures and algorithms in
Java’s libraries only work with object
types (not base types).

• To get around this obstacle, Java defines
a wrapper class for each base type.

• Implicitly converting between base types
and their wrapper types is known as
automatic boxing and unboxing.

23

CS151

Autoboxing and unboxing

24

public class Wrapper
{
 public void w1(Integer ii) {
 System.out.println(ii);
 int i3 = ii; // auto unboxing
 System.out.println(i3*i3);
 System.out.println(i3*ii); // auto unboxing
 }
 public static void main(String[] args) {
 Wrapper w = new Wrapper();
 w.w1(5); // autoboxing
 }
}

CS151 Lec01

What you should know/review

• variables

• expressions

• operators

• methods
▫ parameters
▫ return value

• conditionals
• for/while loops

• class design and
object construction
▫ instance variables
▫ constructor
▫ getters/setters
▫ class methods
▫ new

• arrays

• arrays of objects
• String

25

