
CS206

CS206

Search Trees, AVL Trees

1

CS206

Binary Search Trees
• For all nodes

• The left node
is less than
parent

• The right node
is greater than
parent

2

CS206

Binary Search Trees

• Performance is directly
affected by the height of tree

• All operations are
• worst case
• best case
• Expected if tree is

“balanced”
• balance — generally same

number of nodes in left
and right subtrees

𝑂(h)
h = 𝑂(𝑛)
h = 𝑂(𝑙𝑜𝑔𝑛)

𝑂(𝑙𝑜𝑔𝑛)

3

CS206

Balanced Search Trees

• A variety of algorithms augment a standard
BST with occasional operations to reshape,
reduce height and maintain balance.

• General approach: Rotation — moves a child
to be above its parent,

• ideally

• certainly
O(lgn)

𝑂(1)

4

y x

y

T1

T2 T3T1 T2

T3

x

CS206

Rotation Algorithms

• AVL trees

• Adelson-Velski and Landis (1962)

• Splay trees

• (2,4) trees

• non-binary trees

• Red-Black trees

5

CS206

AVL Trees

• Height-balance property
▫ For every internal node, the avlHeight of the

two children differ by at most 1
▫ avlHeight = max distance from null

endpoint

• Any binary tree satisfying the height-
balance property is an AVL tree

• A height-balanced tree has height O(lg n)
• max height is provably 1.44*lg(n)

6

CS206

AVL Tree Example

7

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

CS206

Insertion
• Maintain with each node the avlHeight.

• On insertion, first recur down through tree to
insert.

• Then as you unwind recursion, update the
avlHeight of each node.

• If height changes, check the height of other
child

• if not in balance then fix

8

CS206

Insertion code to maintain height
(the only code today!!!)

9

private class Node {
 Comparable<E> element;
 int avlHight;
 Node right;
 Node left;

 public Node(Comparable<E> e) {
 avlHight = 1;
 element=e;
 right=null;
 left=null;
 }
}

CS206

More insertion (pseudo)code

10

int insertUtil(node, element):

if element==node.payload
 return -1;

avlD=2;
if node.payload > element:
 if node.left==null
 node.left=new Node(payload)
 else
 avlD = 1+insertUtil(node.left,element);
else
 // same but for right

node.avlHieght = greater of avlD and
 node.avlHeight

return node.avlHeight

CS206

Fixing height imbalances
Rotation!!

• Two types of rotation
• Single

• left subtree of left node causes imbalance
• right subtree of right node causes imbalance

• Double
• right subtree of left node causes imbalance
• left subtree of right node causes imbalance

• The first rotation of a double puts the
tree into position for a single rotation!

11

CS206

AVL Animation

12

CS206

Double Rotation

13

M
4

P
3

R
1

S
2

E
1

First rotate across the point
imbalance

M
4

P
2

S
1

R
1

E
1

0

13

Then do a single
rotation

CS206

Single Rotation

14

M
4

P
3

S
1

R
2

E
1

Rotate across parent at the
lowest imbalance

M
4

R
2

P
1

S
1

E
1

0

CS206

Deletion

15

• Deletion removes a node
with 0 or 1 child
• recall deletion from

binary tree for node
with 2 children.

• Deletion may reduce the
height of parent

• Rotate to rebalance just
like insertion

• Fix avlHeight
• May in case of ties,

choose a single rotation.

T1

T2 T4

1

2
32 x50

1

17

54
1
48

z44

62
2

88
1

T3

3

4

y

78

T1 T4

T2

4
62

x44

y
3

T3

78
2 0
50

48 54

17
1

1 1

z
2

1
88

CS206

Rotations𝑂(𝑙𝑜𝑔𝑛)

• Unlike insertion where rotation of the
nearest unbalanced ancestor restores
the balance globally

• On deletion, rotation of the nearest
unbalanced ancestor only guarantees
balance locally to the subtree

• Worst-case requires rotations up
the tree to restore balance globally

𝑂(𝑙𝑜𝑔𝑛)

16

CS206

Doing AVL

17

insert 100

insert 200

insert 300

insert 400

insert 500

insert 600

insert 700

insert 800

insert 900

insert 750

insert 1000

insert 850

delete 400

delete 300

delete 200

delete 700

delete 500

CS206

Mini-Lab
AVL tree practice

18

Show the BST tree and each AVL rotation (if needed) to keep
a BST an AVL tree

insert 1000
insert 500
insert 750
insert 625
insert 560
insert 590
insert 400
insert 300
insert 600
insert 200
delete 560
delete 590

