CS206

Search Trees, AVL Trees

Binary Search Trees

- For all nodes
- The left node is less than parent
- The right node is greater than parent

Binary Search Trees

- Performance is directly affected by the height of tree
- All operations are $O(h)$
- $h=O(n)$ worst case
- $h=O(\log n)$ best case

- Expected $O(\operatorname{logn})$ if tree is "balanced"
- balance - generally same number of nodes in left and right subtrees

Balanced Search Trees

- A variety of algorithms augment a standard BST with occasional operations to reshape, reduce height and maintain balance.
- General approach: Rotation - moves a child to be above its parent,
- ideally $O(1)$
- certainly O(Ign)

Rotation Algorithms

- AVL trees
- Adelson-Velski and Landis (1962)
- Splay trees
- $(2,4)$ trees
- non-binary trees
- Red-Black trees

AVL Trees

- Height-balance property
- For every internal node, the avlHeight of the two children differ by at most 1
\square avlHeight $=$ max distance from null endpoint
- Any binary tree satisfying the heightbalance property is an AVL tree
- A height-balanced tree has height $\mathrm{O}(\lg \mathrm{n})$
- max height is provably $1.44 * \lg (\mathrm{n})$

AVL Tree Example

Insertion

- Maintain with each node the avlHeight.
- On insertion, first recur down through tree to insert.
- Then as you unwind recursion, update the avlHeight of each node.
- If height changes, check the height of other child
- if not in balance then fix

Insertion code to maintain height

(the only code today!!!)

```
private class Node {
    Comparable<E> element;
    int avlHight;
    Node right;
    Node left;
    public Node(Comparable<E> e) {
        avlHight = 1;
        element=e;
        right=null;
        left=null;
    }
}
```


More insertion (pseudo)code

int insertUtil(node, element):

$$
\begin{aligned}
& \text { if element==node.payload } \\
& \text { return -1; }
\end{aligned}
$$

avlD=2;
if node.payload > element:
if node.left==null
node.left=new Node(payload)
else
avlD = 1+insertUtil(node.left,element);
else
// same but for right
node.avlHieght = greater of avlD and node.avlHeight
return node.avlHeight

Fixing height imbalances Rotation!!

- Two types of rotation
- Single
- left subtree of left node causes imbalance
- right subtree of right node causes imbalance
- Double
- right subtree of left node causes imbalance
- left subtree of right node causes imbalance
- The first rotation of a double puts the tree into position for a single rotation!

AVL Animation

Double Rotation

Single Rotation

Deletion

- Deletion removes a node with 0 or 1 child
- recall deletion from binary tree for node with 2 children.
- Deletion may reduce the height of parent
- Rotate to rebalance just like insertion
- Fix avlHeight
- May in case of ties, choose a single rotation.

$O(\operatorname{logn})$ Rotations

- Unlike insertion where rotation of the nearest unbalanced ancestor restores the balance globally
- On deletion, rotation of the nearest unbalanced ancestor only guarantees balance locally to the subtree
- Worst-case requires O (logn) rotations up the tree to restore balance globally

Doing AVL

	insert	100
	insert	200
	insert	300
	insert	400
	insert	500
	insert	600
	insert	700
	insert	800
	insert	900
	insert	750
	insert	1000
	insert	850
	delete	400
	delete	300
	delete	200
	delete	700
	delete	500
CS206		

Mini-Lab

AVL tree practice

Show the BST tree and each AVL rotation (if needed) to keep a BST an AVL tree

insert	1000
insert	500
insert	750
insert	625
insert	560
insert	590
insert	400
insert	300
insert	600
insert	200
delete	560
delete	590

