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Search Trees, AVL Trees

1



CS206

Binary Search Trees
• For all nodes 

• The left node 
is less than 
parent 

• The right node 
is greater than 
parent
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Binary Search Trees

• Performance is directly 
affected by the height of tree 

• All operations are  
•  worst case 
•  best case 
• Expected  if tree is 

“balanced” 
• balance — generally same 

number of nodes in left 
and right subtrees

𝑂(h)
h = 𝑂(𝑛)
h = 𝑂(𝑙𝑜𝑔𝑛)

𝑂(𝑙𝑜𝑔𝑛)
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Balanced Search Trees

• A variety of algorithms augment a standard 
BST with occasional operations to reshape, 
reduce height and maintain balance. 

• General approach: Rotation — moves a child 
to be above its parent,  

• ideally  

• certainly  
O(lgn)

𝑂(1)
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Rotation Algorithms

• AVL trees 

• Adelson-Velski and Landis (1962) 

• Splay trees 

• (2,4) trees 

• non-binary trees 

• Red-Black trees

5



CS206

AVL Trees

• Height-balance property 
▫ For every internal node, the avlHeight of the 

two children differ by at most 1 
▫ avlHeight = max distance from null 

endpoint 

• Any binary tree satisfying the height-
balance property is an AVL tree 

• A height-balanced tree has height O(lg n)  
• max height is provably 1.44*lg(n)
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AVL Tree Example
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Insertion
• Maintain with each node the avlHeight. 

• On insertion, first recur down through tree to 
insert.  

• Then as you unwind recursion, update the 
avlHeight of each node. 

• If height changes, check the height of other 
child  

• if not in balance then fix
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Insertion code to maintain height  
(the only code today!!!)
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private class Node { 
 Comparable<E> element; 
 int avlHight; 
 Node right; 
 Node left; 
  
 public Node(Comparable<E> e) { 
     avlHight = 1; 
     element=e; 
     right=null; 
     left=null; 
 } 
}
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More insertion (pseudo)code
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int insertUtil(node, element): 

if element==node.payload 
    return -1; 

avlD=2; 
if node.payload > element: 
  if node.left==null 
    node.left=new Node(payload) 
  else 
    avlD = 1+insertUtil(node.left,element); 
else 
    // same but for right 

node.avlHieght = greater of avlD and  
                 node.avlHeight 

return node.avlHeight  
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Fixing height imbalances 
Rotation!!

• Two types of rotation 
• Single  

• left subtree of left node causes imbalance 
• right subtree of right node causes imbalance 

• Double  
• right subtree of left node causes imbalance 
• left subtree of right node causes imbalance 

• The first rotation of a double puts the 
tree into position for a single rotation!
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AVL Animation
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Double Rotation
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Then do a single  
rotation
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Single Rotation
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Deletion
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• Deletion removes a node 
with 0 or 1 child 
• recall deletion from 

binary tree for node 
with 2 children. 

• Deletion may reduce the 
height of parent 

• Rotate to rebalance just 
like insertion 

• Fix avlHeight  
• May in case of ties, 

choose a single rotation.
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Rotations𝑂(𝑙𝑜𝑔𝑛) 

• Unlike insertion where rotation of the 
nearest unbalanced ancestor restores 
the balance globally 

• On deletion, rotation of the nearest 
unbalanced ancestor only guarantees 
balance locally to the subtree 

• Worst-case requires rotations up 
the tree to restore balance globally

𝑂(𝑙𝑜𝑔𝑛) 
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Doing AVL

17

insert 100

insert 200

insert 300

insert 400

insert 500

insert 600

insert 700

insert 800

insert 900

insert 750

insert 1000

insert 850

delete 400

delete 300

delete 200

delete 700

delete 500
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Mini-Lab 
AVL tree practice
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Show the BST tree and each AVL rotation  (if needed) to keep 
a BST an AVL tree

insert 1000
insert 500
insert 750
insert 625
insert 560
insert 590
insert 400
insert 300
insert 600
insert 200
delete 560
delete 590


