CS206

Trees

CS206 1

Tree

e A tree is an abstract
model of a
hierarchical structure

e Nodes have a parent-
child
relation

e NO LOOPS!

CS206 2

Terminology

root: no parent — A e Subtree: tree
external node/leaf: no consisting of a node
children —E, I, J, K, G, and its descendants
H, D

internal node: - node
with at least one child -
A B, C F

ancestor/descendent
depth - # of ancestors
Height - max depth

CS206 3

Binary Tree

e An ordered tree with every node having
at most two children — left and right

Type of Binary Trees

e A binary tree is proper (or full) if each
node has zero or two children

e A binary tree is complete if every level
(except possibly the last) is filled

o If @ complete binary tree is filled at
every level, it is perfect

it

CS206 5

Binary Tree Properties

e Let n denote the number of nodes and &
the height of a binary tree
ch+1<n<2M -
o logln+1)—1<h<n- 1
e Height of a binary tree

is usually
O(logn) of the max

number of nodes —
true worst case O(n)

CS206 6

Interface

public interface TreelInterface

{

int size();

int height();

boolean isEmpty();

boolean contains(B element);
void insert(B element);

B remove(B element);

CS206

Implementation

private class Node {
E payload;
Node right;
Node left;

public Node(E e) {
pay load=e; /’
right=null; -
left=null; left element

+
public String toString() {

return payload.toString();
I3

s This looks a lot like a doubly linked list!!
So, 1s a doubly linked list a tree?

right

CS206 8

Class

public class LinkedBinaryTree<E
extends Comparable<E>> implements
TreeInterface<E>
{

/**% The number of elements in the
tree x/

private int size;

/*xx The root of the tree x/
private Node root;

Class name violates Encapsulation!

CS206 9

Insertion

e smaller to the left, bigger to the right

CS206

Following this pattern creates a “Binary Search Tree”

10

Draw some Binary Trees

e 11, 6,8, 19, 4, 10, 5, 17, 43, 49, 31
e 6,19, 10, 5,43, 31,11, 8,4, 17,49
e 4 5,6,49, 43, 31, 19, 10, 11, 8, 1/
e 17,31, 8, 19, 43, 11, 5, 49, 10, 6, 4

CS206 11 Lecl3

contains

e boolean contains (E element) ;

e returns true if found in the tree, false
otherwise

CS206 12 Lecl3

Contains Algorithm

e compare with root of current subtree
o root is empty — return false
o root == element — return true
o root < element — recurse on right child
o root > element - recurse on left child

CS206 13

Pseudo Code

findRec (root, key):

1f root == null:
return false
1f root.key == key:

return true
1f root.key > key:

return findRec (root.left, key)
else

return findRec (root.right, key)

CS206 14

Recursive Helper Method

e The signature of contains doesn't
allow any Node references (it cannot
since Node is private)

e 50 define a private , recursive “helper”
method.

public boolean contains(E element) {
if (root==null) return false;
return containsUtil(root, element) !=null;

}

private Node containsUtil(Node treepart, E toBeFound)

. } live write

CS206 15

Unordered Contains

e Suppose that you did not know relation
among children

e S0 thing being looked for could be either
left or right

e How would you change containsUtil
function

e \Would a tree be a useful structure in
this case?

CS206 16

insert

e vo1d 1insert (E element) ;
e new node is always inserted as a leaf

¢ inserts to
o |eft subtree if element is smaller than subtree root

o right subtree if larger
Pre-case: if root=null then root=new Node

O

public void insert(E element) {
if (root==null) {
root=new Node<E>(element);
size = 1;
} else
insertUtil(root, element);

CS206 17 Lecl3

Pseudo Code for recursion

insertUtil (node, element) :

1f element==node.payload
return;
1f node.payload > element:
1f node.left==null
node.left=new Node (payload)
else
insertUtil (node.left,element);
else
// same but for right

CS206 18 Lecl3

InsertUtil

private void insertUtil(Node treepart, E toBeAdded) {
“ ¥

mini-lab write

CS206 19 Lecl3

Height / maxDepth

Again, using a recursive helper method

@Override

public int maxDepth()
{

return maxDepthUtil(root, 1);
I3

int maxDepthUtil(Node n, int depth) {
e)

CS206 20

size() without size

’

public int sizeAlt() {
return iSize(root)
}

private int sizeAltUtil(Node treepart) {
if (treepart==null) return 0;
return 1 + sizeAltUtil(treepart.left) +
sizeAltUtil(treepart.right);

Traversals / Printing

CCCCC

Postorder traversal

public void printPostOrder() {
iPrintPostOrder(root, 0);
System.out.println();

}

private void iPrintPostOrder(Node treePart, int depth) {
if (treePart==null) return;
iPrintPostOrder(treePart.left, depth+1);
iPrintPostOrder(treePart.right, depth+1);
System.out.print(" ["+treePart.payload+","+depth+"]1");

CS206 23

Remove

e boolean remove (E element) ;

e returns true if element existed and was
removed and false otherwise
e Cases
o element not in tree
o element is a leaf
o element has one child
o element has two children

CS206 24 Lecl4

| eaf

e Just delete

(15 (15
/ Y ,

—¥ —¥

':: l?) (20 Delete (18) (l?) (20
¥ ¥ s N ‘

G) (o) (o) ()) (n) (29)

CS206 25 Lecl4

One child

e Replace with child — skip over like in linked
list

(e (15)
\ / \.

i 3 R K

(10 (20 (10 (20)
N N\ Delete (25) . N\

(s) (12) (18) (25 (8) (12) (18) (%)

) -

& © Ge) (1)

CS206 26 Lecl4

Two Children

e Replace with in-order predecessor or in-
order successor

e in-order predecessor
o rightmost child in left subtree
o max-value child in left subtree

e in-order successor
o leftmost child in right subtree
o min-value child in right subtree

CS206 27 Lecl4

Replace with Predecessor

\‘_ Delete (20) _’ Ne—

o) K > (10 (K

(19) in-order
J predecessor

node

CS206 28 Lecl4

Replace with Successor

X P

o Delete 20) N~

(10) lz; 3(% > (10) (30)

n-oraer
successor

O T A S N S
8) (12) Q.?) (@ (9 (@ '1:'1\3) (40)

CS206 29 Lecl4

mini-lab exercise

o Complete the implementation of insertUtil
using pencil and paper is OK.

e Strive to be correct
e Think.

e Draw pictures of trees and what you
want your code to do.

e Take a picture of your code and send it to
gtowell206@cs.brynmawr.edu

CS206 30

private Node containsUtil(Node treepart, E toBeFound)

{
if (treepart==null) return null;
int cmp = treepart.element.compareTo(toBeFound);

if (cmp==0)
{
return treepart;
¥
else if (cmp<0)
{
return containUtil(treepart.left, toBeFound);
¥
else // cmp>0
{
return containUtil(treepart.right, toBeFound);
¥
5

CS206 31

