
CS206

CS206

Linked Lists

1

CS206

Linked List

• A linked list is a lists of objects.

• The objects form a linear sequence.

• The sequence is unbounded in length.

• Need a way to get at elements

• head (and possibly tail) pointers

2

A B C D

∅

head tail

CS206

Linked List versus Array
• An array is a single consecutive piece of

memory, a linked list is made of many
disjoint pieces (the linked objects).
ArrayList is between

3

Array
Linked List

ArrayList

A
B

C
D

E

CS206

Linked List versus Array

• Array
▫ quick access to any element
▫ slow insertion, deletion and reordering

(shifting required in general)

• Linked list
▫ quick insertion, deletion and reordering of

the elements
▫ slow access (must traverse list)

4

CS206

Linked List Core
• the essential part of a linked list is a “self-referential”

structure.
• That is, a class with an instance variable that holds a

“reference” to another member of that same class
• Multi-dimensional arrays are similarly self-referential

• For linked lists, this structure is usually referred to as a
Node

5

private class Node<J> {
 public J data;
 public Node next;
 public Node(J data, Node next) {
 this.data = data;
 this.next = next;
 }}

CS206

References in Java (Review)

• A reference variable holds a memory
address to where the referenced object is
stored (not the object itself)

• Reference types
▫ Anything that inherits from Object (including
String, Integer, Double, etc)

▫ “primitive” types: int, float, etc are NOT
reference types

• A reference is null when it doesn’t refer/
point to any object

6

CS206

References and equality (review)

7

public class ReferenceCheck {
 public static void main(String[] args) {
 String s1 = new String("abc");
 String s2 = new String("abc");
 String s3 = s2;
 String s4 = "abc";

 System.out.println(“s1.equals(s2) " + s1.equals(s2));
 System.out.println("s1==s2 " + (s1 == s2));
 System.out.println("s1==s3 " + (s1 == s3));
 System.out.println("s1==s4 " + (s1 == s4));
 System.out.println("s2==s3 " + (s2 == s3));
 System.out.println("s2==s3 " + (s2 == s4));
 System.out.println("s3==s4 " + (s3 == s4));
 }
}

Equals should compare content
compareTo should compare content

== compares memory location

The “new” operator returns
a reference to a reference

CS206

Linked List interface

8

public interface LinkedListInterface<J>
{
 int size();
 boolean isEmpty();
 J first();
 J last();
 void addLast(J c);
 void addFirst(J c);
 J removeFirst();
 J removeLast();
 boolean remove(J r);
}

No mention of nodes!!

CS206

Starting Point

9

public class LinkedList<J>
 implements LinkedListInterface<J>
{
 private class Node<V>
 {
 public V data;

 public Node next;
 public Node(V data, Node next)
 {
 this.data = data;
 this.next = next;
 }
 }
 private Node head = null;
}

CS206

Size

10

public int size() {
 int siz=0;
 for (Node n=head; n!=null; n=n.getNext())
 {
 siz++;

 }
 return siz;
}

• Algorithmic Complexity (Big-O)?
• Can we improve?

CS206 Lec05

Print a Linked List

11

public String toString() {
 StringBuffer s = new StringBuffer();
 for (Node n=head; n!=null; n=n.getNext())
 {
 s.append(n.data.toString());
 if (n != tail)
 {
 s.append("\n");
 }
 }
 return s.toString();
}

CS206 Lec05

Inserting at the Tail
1. Get to the end

1. O(n)
2. Save time, add

an instance
variable “tail”

2. Create a new node
3. Have new node point

to null
4. have old last node

point to new node
5. update tail to point

to new node

12

R1

R1R1

R7R1R1

R7

R7R1

R2

R2

CS206 Lec05

Insertion

13
Why not take a Node?

 public void addLast(J c)
 {
 Node newest = new Node(c, null);
 if (isEmpty())
 { head = newest;}
 else
 {
 tail.next=newest;
 }
 tail = newest;
 size++;
 }

CS206 Lec05

Inserting at the Head

1. create a
new node

2. have new
node point
to old head

3. update
head to
point to
new node

14

R15R13R42

R73R15R13

R73R15R13

R73

R42

write addFirst at chalkboard

CS206 Lec05

Removing at the Head

1. update
head to
point to
next node in
the list

2. allow
“garbage
collector” to
reclaim the
former first
node

15

R2R4R74

R2

R2R4R74

R4R74R42

R42

CS206 Lec05

Deletion

16

 public J removeFirst()
 {

 if (isEmpty()) {return null;}
 J target = head.data;
 head = head.next;
 size--;
 if (isEmpty()) {tail = null;}
 return target;

 }

CS206 Lec06

removeLast()

17

1. If you have a tail pointer
2. If you do not have a tail pointer

CS206

Mini-Lab

18

• Hand write the method below

• This method should search through its linked list
for a node containing the object j (use ==).

/**
 * Remove a node containing the provided object.
 * If not found, return false
 * If found, remove from the linked list the node containing r
 * and return true.
 * @param r the object to be removed.
 * @return true iff the object is in the linked list.
 */
 boolean remove(J r);

