CS206

Linked Lists

CS206 1

Linked List

e A linked list is a lists of objects.

e The objects form a linear sequence.

e The sequence is unbounded in length.
e Need a way to get at elements

» head (and iossibly tail) pointers

A B C D

CS206 2

Linked List versus Array

e An array is a single consecutive piece of
memory, a linked list is made of many
disjoint pieces (the linked objects).
ArrayList is between

Array AITaYLISt
> A

——iC_

Memory l E

Linked List

CS206 3

Linked List versus Array

e Array
o quick access to any element
o slow insertion, deletion and reordering
(shifting required in general)
o Linked list

o quick insertion, deletion and reordering of
the elements

o Slow access (must traverse list)

CS206 4

Linked List Core

III

e the essential part of a linked list is a “self-referentia
structure.

e That is, a class with an instance variable that holds a
“reference” to another member of that same class

e Multi-dimensional arrays are similarly self-referential

e For linked lists, this structure is usually referred to as a
Node

private class Node<J> {
public J data;
public Node next;
public Node (J data, Node next) {
this.data = data;
this.next = next;

I

CS206 5

References in Java (Review)

e A reference variable holds a memory
address to where the referenced object is

stored (not t
e Reference ty

ne object itself)

DES

o Anything that inherits from Object (including
String, Integer, Double, etc)

o “primitive” types: int, float, etc are NOT
reference types

e A reference is null when it doesn't refer/
point to any object

CS206

References and equality (review)

public class ReferenceCheck {
public static void main(Stringl[] args) {

String s1 = new String("abc"); The “new” operator returns
String s2 = new String("abc"); a reference to a reference
String s3 = s2;

String s4 = "abc'; Equals should compare content

compareTo should compare content

System.out.println(“sl.equals(s2) " + sl.equals(s2));
System.out.println("sl==s2 " + (sl == s2));
System.out.println("sl==s3 " + (s1 == s3));
System.out.println("sl==s4 " + (sl == s4));
System.out.println("s2==s3 " + (s2 == s3));
System.out.println("s2==s3 " + (s2 == s4));
System.out.println("s3==s4 " + (s3 == s4));
ks
1 == compares memory location

CS206 7

Linked List interface

public interface LinkedListInterface<J>
{
int size();
boolean isEmpty();
J first();
J last();
void addLast(J c):
void addFirst(J c);
J removeFirst():
J removeLast();
boolean remove(J r):

No mention of nodes!!

CS206 8

Starting Point

public class LinkedList<]>
implements LinkedListInterface<J>

{
private class Node<V>
{
public V data;
public Node next;
public Node(V data, Node next)
{
this.data = data;
this.next = next;
I3
¥
private Node head = null;
¥

CS206 9

Size

public int size() {
int siz=0;
for (Node n=head; n'!'=null; n=n.getNext())
{

}

return siz;

S1zZ++;

e Algorithmic Complexity (Big-O)?
e Can we improve?

CS206 10

Print a Linked List

public String toString() {
StringBuffer s = new StringBuffer();
for (Node n=head; n'!'=null; n=n.getNext())
{
s.append(n.data.toString());
if (n != tail)
{

}
}

return s.toString();

s.append("\n");

}

CS206 11

Lec05

Inserting at the Talil

Get to the end

1. O(n) tail
2. Save time, add Eﬁt—’ %)

an instance @
variable “tail” tail newest
Crate e 10 oy N B -0 (-0
. ~— > o *——>» R2 ~——>»
Have new node point o
tO nU” tail newest

have old last node

point to new node EE*EE{% =
update tail to point
to new node

CS206 12 Lec05

Insertion

public void addLast(J c)
{
Node newest = new Node(c, null);
if (isEmpty())
{ head = newest;}
else

{
}

tail = newest;
size++;

}

talil.next=newest;

Why not take a Node?

CS206 13 Lec05

Inserting at the Head

1. create a head
new node ﬁ
node point @

newest head

to old head \
3. update R4 ._t_.m
head to '

point to v

'
%
'
S

newest head

new node
i -m= - -Em=— o

(©)

write addFirst at chalkboard

CS206 14 Lec05

Removing at the Head

. update
head to
point to
next node in
the list

. allow
“garbage
collector” to
reclaim the
former first
node

head

EWW

(a)

R42

= -me

(b)

w-m-

(c)

" 3 "

CS206

15 Lec05

Deletion

public J removeFirst()

{

if (isEmpty()) {return null;}
J target = head.data;

head = head.next;

size——,

if (isEmpty()) {tail = null;}
return target,

CS206

16

Lec05

removelast()

1. If you have a tail pointer
2. If you do not have a tail pointer

CS206 17 Lec06

Mini-Lab

e Hand write the method below

e This method should search through its linked list
for a node containing the object j (use ==).

@param r
@return

boolean remove(] r);

CS206 18

