CS206

Analysis of Algorithms
Running Time

- The run time of a program depends on
 - efficiency of the algorithm/implementation
 - size of input
 - what else?
- The running time typically grows with input size
- How do you measure running time?
 - CPU usage?
 - Reliability?
public class Timer {
 private static final int REPS = 10; // number of trials
 private static final int NANOS_SEC = 1000000000; // nanosec per sec

 public double doSomething(int[] data) {
 double k = 0;
 for (long i = 0; i < data.length; i++) {
 for (long j = 0; j < data.length; j++) {
 k += Math.sqrt(i * j);
 }
 }
 return k;
 }

 public static void main(String[] args) {
 Timer timer = new Timer();
 long data[] = new long[REPS];
 for (int j = 1000; j < 10001; j = j + 1000) {
 for (int i = 0; i < REPS; i++) {
 long start = System.nanoTime();
 timer.doSomething(new int[j]);
 long finish = System.nanoTime();
 data[i] = (finish - start) / NANOS_SEC;
 System.out.println(String.format("%d %.4f", j, (double) (finish - start) / NANOS_SEC));
 }
 }
 }
}
Experimental Studies

- Write a program implementing the algorithm
- Run it with different input sizes and compositions
- Record times and plot results
Limitation of Experiments

- You have to implement the algorithm
- You have to generate inputs that represent all cases
- Comparing two algorithms requires exact same hardware and software environments
 - Even then timing is hard
 - multiprocessing
 - file i/o
Theoretical Analysis

• Use a high-level description of algorithm
 □ pseudo-code
• Running time as a function input size, n
• Ignore other details of the input
• Independent of the hardware/software environment
Primitive Operations

- Basic computations
 - *, /, +, -
- Comparisons
 - ==, >, <
- Setting
 - x = y
- Assumed to take constant time
 - exact constant is not important
 - Because constant is not important, can do more than just this list
Example
Time required to compute an average

```java
public double allAverage(long[] data) {
    double res = 0;
    for (int i=0; i<data.length; i++) {
        res = res + data[i];
    }
    return res/data.length;
}

public double posAverage(long[] data) {
    double res = 0;
    long pCount = 0;
    for (int i=0; i<data.length; i++) {
        long datum = data[i];
        if (0 < datum) {
            res = res + datum;
            pCount = pCount + 1;
        }
    }
    return res/pCount;
}
```

How many operations? (In terms of the length of data)
Estimate Running Time

- **allAverage** executes $5N+3$ operations
- **posAverage** executes a total of $9N+3$ primitive operations in the worst case, $5N+3$ in the best case.
- Let a be the fastest primitive operation time, b be the slowest primitive operation time.
- Let $T(n)$ denote the worst-case time of **posAverage**. Then:

 $$a(5n+3) < T(n) < b(9n+3)$$

- $T(n)$ is bounded by two functions
 - both are linear in terms of n
Growth Rate of Running Time

• Changing the hardware/software environment
 ▫ Affects $T(n)$ by a constant factor, but
 ▫ Does not alter the growth rate of $T(n)$

• The linear growth rate of the running time $T(n)$ is an intrinsic property of both algorithms.
Comparison of Two Algorithms

- **insertion sort**: \(n^2/4 \)
- **merge sort**: \(2n\log n \)
- Suppose \(n = 10^8 \)
 - Insertion sort:
 \[
 10^8 \times 10^8 / 4 = 2.5 \times 10^{15}
 \]
 - Merge sort:
 \[
 10^8 \times 26 \times 2 = 5.2 \times 10^9
 \]
 - Or merge sort can be expected to be about \(10^6 \) times faster
 - So if merge sort takes 10 seconds then insertion sort takes about 100 days
Asymptotic Notation

• Provides a way to simplify analysis
• Allows us to ignore less important elements
 □ constant factors
• Focus on the largest growth of n
• Focus on the dominant term
How do these functions grow?

- $f_1(x) = 43n^2 \log^4 n + 12n^3 \log n + 52n \log n$
- $f_2(x) = 15n^2 + 7n \log^3 n$
- $f_3(x) = 3n + 4 \log_5 n + 91n^2$
- $f_4(x) = 13 \cdot 3^{2n+9} + 4n^9$
Big \mathcal{O}

- Constant factors are ignored
- Upper bound on time
- Goal is to have an easily understood summary of algorithm speed
 - not implementation speed
Sublinear Algorithms

- $O(1)$
 - runtime does not depend on input

- $O(\log_2 n)$
 - algorithm constantly halves input
Linear Time Algorithms: $O(n)$

- The algorithm’s running time is at most a constant factor times the input size
- Process the input in a single pass spending constant time on each item
 - max, min, sum, average, linear search
- Any single loop
\(O(n \log n) \) time

Frequent running time in cases when algorithms involve:

- Sorting
 - only the “good” algorithms
 - e.g. quicksort, merge sort, ...
Quadratic Time: $O(n^2)$

- Nested loops, double loops
 - The doSomething algorithm
- Processing all pairs of elements
- The less-good sorting algorithms
 - e.g., insertion sort
Slow!!!! Times

- polynomial time: $O(n^k)$
 - All subsets of n elements of size k

- exponential time: $O(2^n)$
 - All subsets of n elements (power set)

- factorial time: $O(n!)$
 - All permutations of n elements
Timing

![Graph showing different time complexities: O(n^n), O(n^3), O(n^2), O(n), O(\sqrt{n}), O(log n), O(1).]
Writing code that runs in $O(x)$ time

```java
public interface SpeedyAlgorithms {
    void orderOne(int[] data);
    void orderLogN(int[] data);
    void orderN(int[] data);
    void orderNSquared(int[] data);
    void orderNCubed(int[] data);
    void orderExponential(int[] data);
}
```