CS206

Finish Hashtables
Analysis of Algorithms
Error from last class

• Java hashcode can return negative values
 • So need to add absolute value

```java
private int h(Object k) {
    return Math.abs(k.hashCode()) % backingArray.length;
}
```
Probing Handling Deletions

Suppose:

<table>
<thead>
<tr>
<th>Loca</th>
<th>Key</th>
<th>Valu</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>C</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tablesiz=11

h(t) = t%11

quadratic probing

- put(2,A)
- put(13,B)
- put(24,C)
- put(35,D)
- put(46,F)

del(13)

get(24)

get(24)

put(35,E)

<table>
<thead>
<tr>
<th>Locati</th>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>35</td>
<td>D</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tombstones!
Probing vs Chaining

- Probing is significantly faster in practice
- Locality of references – much faster to access a series of elements in an array than to follow the same number of pointers in a list
- Efficient probing requires soft/lazy deletions – tombstoning
 - de-tombstoning
Rehashing

• Need to make the hashtable bigger when it gets “full”
• Need to remove tombstones when there are too many
Using Hashtables

- No worries about hashing functions, rehashing, ...
 - Someone else’s responsibility
- java.util.HashMap
Private vars and inheritance

Problem, how to use private vars of parent class

Inherit.java
Exceptions, return values and toString

Main.java, Shak.java and Line.java
Running Time

- The run time of a program depends on
 - efficiency of the algorithm/implementation
 - size of input
 - what else?
- The running time typically grows with input size
- How do you measure running time?
 - CPU usage?
 - Reliability?
public class Timer {
 private static final int REPS = 10; // number of trials
 private static final int NANOS_SEC = 1000000000; // nanosec per sec

 public double doSomething(int[] data) {
 double k = 0;
 for (long i = 0; i < data.length; i++) {
 for (long j = 0; j < data.length; j++) {
 k += Math.sqrt(i * j);
 }
 }
 return k;
 }

 public static void main(String[] args) {
 Timer timer = new Timer();
 long data[] = new long[REPS];
 for (int j = 1000; j < 10001; j = j + 1000) {
 for (int i = 0; i < REPS; i++) {
 long start = System.nanoTime();
 timer.doSomething(new int[j]);
 long finish = System.nanoTime();
 data[i] = (finish - start) / NANOS_SEC;
 System.out.println(String.format("%d %.4f", j, (double) (finish - start) / NANOS_SEC));
 }
 }
 }
}
Experimental Studies

- Write a program implementing the algorithm
- Run it with different input sizes and compositions
- Record times and plot results
Limitation of Experiments

- You have to implement the algorithm
- You have to generate inputs that represent all cases
- Comparing two algorithms requires exact same hardware and software environments
 - Even then timing is hard
 - multiprocessing
 - file i/o
Theoretical Analysis

- Use a high-level description of algorithm
 - pseudo-code
- Running time as a function input size, n
- Ignore other details of the input
- Independent of the hardware/software environment
Primitive Operations

• Basic computations
 • * / + -

• Comparisons
 • ==, >, <

• Setting
 • x=y

• Assumed to take constant time
 □ exact constant is not important
 □ Because constant is not important, can do more than just this list
Example

Time required to compute an average

```java
public double calcA(long[] data) {
    double res = 0;
    for (int i=0; i<data.length; i++) {
        res = res+data[i];
    }
    return res/data.length;
}

public static calcB(long[] data) {
    double res = 0;
    long pd = 0;
    for (int i=0; i<data.length; i++) {
        long datum=data[i];
        if (pd<datum) {
            res = res+datum;
        }
        pd=datum;
    }
    return res/data.length;
}
```

How many operations? (In terms of the length of data)
Estimate Running Time

- calcB executes a total of $7N+1$ primitive operations in the worst case, $5N+1$ in the best case.

- Let a be the fastest primitive operation time, b be the slowest primitive operation time.

- Let $T(n)$ denote the worst-case time of calcB. Then $a(5n + 1) \leq T(n) \leq b(7n + 1)$

- $T(n)$ is bounded by two functions
 - both are linear in terms of n
Growth Rate of Running Time

• Changing the hardware/software environment
 ▫ Affects $T(n)$ by a constant factor, but
 ▫ Does not alter the growth rate of $T(n)$

• The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm calcB (and calcA)
Comparison of Two Algorithms

- insertion sort: \(n^2/4 \)
- merge sort: \(2n \log n \)
- suppose \(n=10^8 \)
 - insertion sort: \(10^8 \times 10^8/4 = 2.5 \times 10^{15} \)
 - merge sort: \(10^8 \times 26 \times 2 = 5.2 \times 10^9 \)
 - or merge sort can be expected to be about \(10^6 \) times faster
 - so if merge sort takes 10 seconds then insertion sort takes about 100 days
Asymptotic Notation

- Provides a way to simplify analysis
- Allows us to ignore less important elements
 - constant factors
- Focus on the largest growth of n
 - Focus on the dominant term
How do these functions grow?

- $f_1(x) = 43n^2 \log^4 n + 12n^3 \log n + 52n \log n$
- $f_2(x) = 15n^2 + 7n \log^3 n$
- $f_3(x) = 3n + 4 \log_5 n + 91n^2$
- $f_4(x) = 13 \cdot 3^{2n+9} + 4n^9$
Big \mathcal{O}

- Constant factors are ignored
- Upper bound on time
- Goal is to have an easily understood summary of algorithm speed
 - not implementation speed
Sublinear Algorithms

- $O(1)$
 - runtime does not depend on input

- $O(\lg_2 n)$
 - algorithm constantly halves input
Linear Time Algorithms: $O(n)$

- The algorithm’s running time is at most a constant factor times the input size
- Process the input in a single pass spending constant time on each item
 - max, min, sum, average, linear search
- Any single loop
\(O(n \log n) \) time

Frequent running time in cases when algorithms involve:

- Sorting
 - only the “good” algorithms
 - e.g. quicksort, merge sort, ...
Quadratic Time: $O(n^2)$

- Nested loops, double loops
 - The `doSomething` algorithm
- Processing all pairs of elements
- The less-good sorting algorithms
 - e.g., insertion sort
Slow!!!! Times

- polynomial time: $O(n^k)$
 - All subsets of n elements of size k

- exponential time: $O(2^n)$
 - All subsets of n elements (power set)

- factorial time: $O(n!)$
 - All permutations of n elements
Timing

The diagram illustrates the relationship between time and data input (space) for various time complexities:

- \(O(n^n) \)
- \(O(n^3) \)
- \(O(n^2) \)
- \(O(n) \)
- \(O(\sqrt{n}) \)
- \(O(\log n) \)
- \(O(1) \)
Writing code that runs in O(x) time

```java
public interface SpeedyAlgorithms {
    void orderOne(int[] data);
    void orderLogN(int[] data);
    void orderN(int[] data);
    void orderNSquared(int[] data);
    void orderNCubed(int[] data);
    void orderNFactorial(int[] data);
}
```