
CS206 Lec02

CS206

I/O Methods

Files/Exceptions

Inheritance

1

CS206 Lec02

Strings

• Strings - "a", “abc" — double quotes

• Characters - ‘a' — single quotes
• Declaring String objects

String name;
String name = new String();

• Declaring String objects with initialization
String name1 = "Fred";
String name2 = new String(“Fred");

There are subtle differences between these two
declarations.

2

CS206 Lec01

.equals: Object Equality

• Use == only when
comparing base
types

• int, float, …

• Otherwise
use .equals

3

public class StringEquals {
 public static void main(String[] args) {
 String str1 = new String("one");
 String str2 = new String("one");
 System.out.println("str1==str2: "

+ str1 == str2);
 System.out.println("str1==str2: "

+ (str1 == str2));
 System.out.println("str1.equals(str2): "

+ str1.equals(str2));
 }
}

CS206 Lec01

Wrapper Types

• Most data structures and algorithms in
Java’s libraries only work with object
types (not base types).

• To get around this obstacle, Java defines
a wrapper class for each base type.

• Implicitly converting between base types
and their wrapper types is known as
automatic boxing and unboxing.

4

CS206

Autoboxing and unboxing

5

public class Wrapper
{
 public void w1(Integer ii) {
 System.out.println(ii);
 int i3 = ii; // auto unboxing
 System.out.println(i3*i3);
 System.out.println(i3*ii); // auto unboxing
 }
 public static void main(String[] args) {
 Wrapper w = new Wrapper();
 w.w1(5); // autoboxing
 }
}

CS206 Lec01

What you should know/review

• variables

• expressions

• operators

• methods
▫ parameters
▫ return value

• conditionals
• for/while loops

• class design and
object construction
▫ instance variables
▫ constructor
▫ getters/setters
▫ class methods
▫ new

• arrays

• arrays of objects
• String

6

CS206

Start of the Java class hierarchy

7
http://web.deu.edu.tr/doc/oreily/java/langref/ch10_js.htm

http://web.deu.edu.tr/doc/oreily/java/langref/ch10_js.htm

CS206

Java Object Methods

• public boolean
equals(Object ob)

• public String
toString()

• public Class
getClass()

8

• protected Object
clone()

• protected void finalize()
• public int hashCode()
• public void notify()
• public void notifyAll()
• public void wait()
• public void wait(long l)
• public void wait(long l,

int ii)

CS206

Casting, Classes and Inheritance
• Suppose: SPCA shelter

for only dogs and cats
• Desire: A program that

tracks all animals at
shelter

• Approach
• Create 3 classes,

Dog and Cat that
extend (inherit from)
from Animal.

• Use single array to
hold all animals

• But deal with dogs
cats separately later

9

public class Animal {}
public class Dog extends Animal {}
public class Cat extends Animal {}

public class Shelter {
 Animal[] animals = new Animal[100];
 int animalCount=0;
 public void addAnimal(Animal animal) {
 animals[animalCount++]=animal;
 }
 public Animal getAnimal(int location) {
 return animals[location];
 }
 public static void main(String[] args) {
 Shelter shelter = new Shelter();
 shelter.addAnimal(new Dog());
 shelter.addAnimal(new Cat());
 Animal aa = shelter.getAnimal(1);
 if (aa instanceof Cat) {
 Cat c = (Cat)shelter.getAnimal(1); //Danger here
 System.out.println(c);
 }}}

CS206 Lec02

Exceptions
• Unexpected events during execution

▫ unavailable resource
▫ unexpected input
▫ logical error

• In Java, exceptions are objects
• 2 options with an Exception

• “Throw” it
• this says that the exception must be handled

elsewhere
• “Catch” it.

• handle the problem here and now

10

CS206 Lec02

Catching Exceptions

• Exception handling
• try-catch

• An exception is
caught by having
control transfer to
the matching catch block

• If no exception occurs, all catch blocks
are ignored

11

CS206 Lec02

Throwing Exceptions

• An exception is thrown
▫ implicitly by the JVM because of errors
▫ explicitly by code

• Exceptions are objects
▫ throw an existing/predefined one
▫ make a new one

• Method signature – throws
public static int parseInt(String s)
throws NumberFormatException

12

CS206 Lec02

Java’s Exception Hierarchy

13

CS206 Lec02

Reading the Keyboard
• System.in is, by default, set to receive keyboard input
• Use Scanner to read from keyboard

• Do NOT use scanner otherwise

14

public class Student {
 String name;
 int age;

 public Student(String n, int a) {
 name = n;
 age = a;
 }

 public String toString() {
 StringBuilder sb =
 new StringBuilder("Details..............");
 sb.append("\nName: “).append(this.name);
 sb.append(“\nAge: ").append(age);
 return sb.toString();
 }
 public Student() throws IOException, InputMismatchException {

 this(); // call the default constructor to be sure that the variables are initialized
 try (Scanner scanner = new Scanner(System.in);) {
 System.out.print("Enter student name: ");
 name = scanner.nextLine();
 System.out.print("Enter Age: “);
 age = scanner.nextInt();
 } finally {}
 }

CS206

Handling Exceptions
try-catch

15

public static void main2(String[] args) {
 Scanner scanner = new Scanner(System.in);
 String name;
 int age;
 System.out.print("Enter student name: ");
 name = scanner.nextLine();
 try {
 System.out.print("Enter Age: ");
 age = scanner.nextInt();
 } catch (InputMismatchException e) {
 System.err.println("problem " + e);
 return;
 }
 Student student = new Student(name, age);
 System.out.println("\n" + student.toString());
 }

Exceptions should be
handled as soon as
possible.

try-catch should
enclose as little
code as possible

main2 — looks like
main but will not be
exectuted.

CS206

public Student(InputStream inStream) throws IOException,
InputMismatchException {
 this(); // call the default constructor to be sure that the
variables are initialized
 Scanner scanner = new Scanner(inStream);
 System.out.print("Enter student name: ");
 name = scanner.nextLine();
 System.out.print("Enter Age: ");
 age = scanner.nextInt();
 }

public static void main(String[] args) {
 try {
 Student student = new Student(System.in);
 System.out.println("\n" + student);
 } catch (IOException ioe) {
 System.err.println("problem " + ioe);
 } catch (InputMismatchException ime) {
 System.err.println("problem2 " + ime.toString());
 }
 }

Handling Exceptions
throws

16

Every throw must
be caught

Sometimes it is better to handle exceptions elsewhere ..

Never throw
from main!!!!

CS206

Reading from Files

17

 public void readOneLineTC()
 {
 BufferedReader br;
 try {
 br = new BufferedReader(
 new FileReader(fileName));
 br.readLine();
 } catch (FileNotFoundException fnf) {
 System.err.println(“No file " + e);
 } catch (IOException e) {
 System.err.println("Reading " + e);
 } finally {
 if (br!=null) {
 try {
 br.close();
 } catch (IOException ioe) {
 System.err.println("Close" + ioe);
 }
 }
 }
 }

public void readOneLineTCR(
 {
 try (BufferedReader br = new BufferedReader(
 new FileReader(fileName));) {
 br.readLine();
 // close unnecessary in this formulation
 } catch (FileNotFoundException e) {
 System.err.println(“Open " + e);
 } catch (IOException e) {
 System.err.println("Reading " + e);
 }
 }

finally == code that WILL be
executed. Optional part of try-
catch

Close can throw an exception
so it too must be caught

if time, write program to demo try/catch/fianlly

CS206 Lec02

Software Design Goals

• Robustness
▫ software capable of error handling and recovery
▫ programs should never crash

▫ ending abruptly is not crashing

• Adaptability
▫ software able to evolve over time and changing conditions

(without huge rewrites)

• Reusability
▫ same code is usable as component of different systems in

various applications
▫ The story of Mel — https://www.cs.utah.edu/~elb/folklore/mel.html

18

https://www.cs.utah.edu/~elb/folklore/mel.html

CS206 Lec02

OOP Design Principles
• Modularity

• programs should be composed of “modules” each of which do their own
thing

• each module is separately testable

• Large programs are built by assembling modules

• Objects (Classes) are modules

• Abstraction

• Get to the core — non-removable essence of a thing

• Most pencils are yellow, but yellowness does not required

• Encapsulation

• Nothing outside a class should know about how the class works.

• For instance, does the Object class have any instance variables.
(Of what type?)

• Allows programmer to totally change internals without external effect

19

CS206 Lec02

OOP Design

• Responsibilities/Independence: divide
the work into different classes, each
with a different responsibility and are as
independent as possible

• Behaviors: define the behaviors for each
class carefully and precisely, so that the
consequences of each action performed
by a class will be well understood by
other classes that interact with it.

20

CS206 Lec02

Class Definition

• Primary means for abstraction in OOP

• Class determines
▫ the way state information is stored – via

instance variables
▫ a set of behaviors – via methods

• Classes encapsulate
▫ private instance variables

▫ public accessor methods (getters)

21

CS206 Lec02

Constructors
• Constructors are never inherited

• A class may invoke the constructor of the class it extends via a call
to super with the appropriate parameters

• e.g. super()

• super must be in the first line of constructor

• If no explicit call to super, then an implicit call to the zero-
parameter super will be made

• A class make invoke other constructors of their own class using
this()

• this must be first

• Cannot explicitly use both super and this in single
constructor

• See FileOpen.java for example

22

