
CS206 Introduction to Data Structures
Homework 5
Stacks
There are three parts to this homework. In the first part you will complete a partial
implementation of an array-based stack. In the second and third parts you will use that stack
to: investigate a game I call “Infinite Hopscotch”, and simulate the UNDO function of a text
editor.

Part 0
Create a new folder, presumably named Assignment5, and copy the following code into it.

	 Histogrammer.java

	 StackIntf.java

	 ArrayStackHW5.java

	 IHDice.java

All of the code is available on powerpuff in the directory /home/gtowell/Public/206/a5/. Use cp
or scp as needed to copy this code to the directory containing the work for this assignment.

Part 1
Two functions (push and pop) in ArrayStackHW5.java need to be implemented. Do that.

Part 2
Simulating Undo in an editor

Editors use a stack for Undo. In this part of the assignment you will use the stack from
part 1 to simulate typing with undo. Here is what you need to do: 	

Use scanner to read from the keyboard one line at a time.

With each character in the line:

	 if the character is a 1, UNDO the previous character.  
	 	 (if there is nothing to undo, do nothing

	 else if the character is a 9 
	 	 print the contents of the stack by popping each item then exit

	 else if the character is an upper or lower case letter add it to the stack

	 else if the character is an underscore ‘_’ (ASCII value 95), add it to the stack 
	 	 we use _ instead of space because I can see _ and I can’t see ‘ ‘.

	 else ignore all other characters.

	 if you run out of characters in a line before getting a ‘9’, read another line

So for instance, if I entered 
	 asdf_ghij1111jj8765439

then the output of the program would be  
	 jj_fdsa

Given the input 
	 qwert_yuio_hhh 
 1111abc19wwwww

The output of the program would be 
	 baoiuy_trewq

The charAt function of String and an ASCII table will both be useful for this part.

Part 3
Infinite Hopscotch

The game of infinite hopscotch is my invention; it is played much like hopscotch. The
idea is you have an N sided die (the singular of dice) where N is an even number. Two
of the sides are labelled “0”, (N-2)/2 are labelled “1” and (N-2)/2 are labelled “2”. The
game starts by rolling the die. If you get a 1, jump forward onto one foot; a 2 jump
forward onto 2 feet. After jumping, roll the die again and make the jump appropriate
jump. Repeat. If you roll a 0, turn around and exactly reverse the jumps you made on
the way out.

The more sides the die has, the lower the probability of turning around on any given
jump. (If you roll a zero on the first roll, your turn is over.) If you jump incorrectly at any
time, or fail to exactly reverse your jumps, you loose.

Clearly the biggest challenge in infinite hopscotch is to keep track of your outbound
jumps so you can exactly reverse yourself coming back.

The solution, use a stack!

To aid you in playing this game, I provide the class IHDice.java (Infinite Hopscotch
Dice). You must use this class. To use it:

	 IHDice ihDice = new IHDice(26);

will make a new 26 sided die

	 int roll = ihDice.nextHop();

will return 0, 1 or 2 according the probabilities appropriate to the number of sides.

There are two sub-tasks for part 3.

1. Print the jumps made during 20 plays of the game with 26 sided die. For instance 
2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 
1 2 1 1 2 1 
etc

2. With a 100 sided die, run the program a lot (at least 1000 times), recording the
number of hops made before turning around. Store that information in a way such
that you can use the Histogrammer class to create a lo-res histogram of the
frequency of the each number of hops made before turning around. (See the
Histogrammer class for more details about its use.)

What to turn In
1. All code your wrote or edited, well commented

2. A file of containing the histogram from 3.2. (See the Histogrammer class for how to output

directly to a file.)

3. A separate file with the 20 plays of a 26-sided die (3.1) This could be in your README

4. README with the usual information. In particular, be sure it is clear to me how to use your

UNDO simulator.

Standard Boilerplate:

Your program will be graded based on how it runs on the

 department’s Linux server, not how it runs on your computer.

The following steps for submission assume you created a project named AssignmentN in the
directory /home/YOU/cs206/ on the CS department UNIX computers (e.g. powerpuff)

• For this assignment N=5

• Put the README file into the project directory

• Go to the directory /home/YOU/cs206

• Enter submit -c 206 -p N -d AssignmentN
For more on using the submit script http://systems.cs.brynmawr.edu/Submit_assignments

http://systems.cs.brynmawr.edu/Submit_assignments

	Homework 5
	Stacks
	What to turn In

