
CS106/CS206 Code Formatting
Standards and Guidelines
Disclaimer
You will notice that code in my lecture notes rarely adhere to these standards. This is because
of limited slide space. It's the lesser of two evils to choose short variable names than to use
small illegible fonts. Same goes for lack of white spaces and comments. Do NOT program like
my lecture notes. Those code snippets are presentation aids that are not meant to stand alone.

Naming Conventions
● Use meaningful names! For example, if your program needs a variable to represent the

radius of a circle, call it radius, not r and not rad.
● Use single letter variables for simple loop indices only.
● The use of very obvious, common, meaningful abbreviations is permitted. For example,

“number” can be abbreviated as “num” as in numStudents.
● Variable, instance variables, and method names in Java generally are written in

camelCase, starting with a lower-case letter and putting the first letter of subsequent
words in uppercase.

● Class names are written in PascalCase, starting with a capital letter.
● Constants (static final) are written in ALL_CAPS.

Whitespace
The most-readable programs are written with prudent use of whitespace (including both blank
lines and spaces).

● Use blank lines to separate major parts of a source file or method. These are like
paragraph breaks in English writing.

● After every {, indent by at least 2 spaces until the matching }. A good editor like emacs will
help you with indentation - remember to keep pressing those tabs!

● Separate an operator from its operands by spaces.
● There should never be a need for 2 blank lines in a row or two spaces in a row.

Line Length
All lines should have length at most 100 characters. This makes it easier to read code on a
potentially small screen. If you need to break a line in order to satisfy this, the rest of the line
should be indented more than its current block. In cases where the line length is within a pair of
parentheses, one good option is to indent the rest of the line to match with the opening
parenthesis. For example:

if (here is a long condition for an if statement and

 the rest of the condition) {
 here is a long statement inside the if statement and
 the rest of the statement below it;
}

File header comments
Every source code file should contain a header comment that describes the contents of the file
and other pertinent information. It must include the following information:

● Your name
● The file name
● A description of the contents of the file

For example:

/* Name: Dianna Xu
 * File: Main.java
 * Desc:
 *
 * The main driver program for Assignment 1.
 *
 * This program reads the file specified by the first command line
 * argument, counts the number of words, spaces, and characters and
 * displays the results in the format specified in the project
 * description.
 *
 */

Variable comments
All instance variables must be commented. Most local variables should be commented, too.

Method comments
All methods must be commented. The comments should explain what the method does, what its
parameters are (not their types, we already know that), and what it returns. You should use the
javadoc method comment style, which lists and comments all parameters and return values,
shown below:

/* returns the sum of two integers
 * @param x The first integer
 * @param y The second integer
 * @return The sum of x+y
 */
 int sum(int x, int y)

In-Line Comments
You should strive for your code to be self-explanatory. However, it is inevitable that some lines
of code are more intricate. In these cases, a comment describing the code is well-advised. The
comment should not simply translate the code to English, but should explain what’s really going
on. For example:

// Unhelpful comment:
starSides = 5; // set starSides to 5

// Helpful comment:
starSides = 5; // reset starSides to original value

Well-structured code will be broken into logical sections that each perform a simple task. Each
of these sections of code (typically starting with an if statement or a loop) should be
documented.

An in-line comment too long to appear to the right of your code appears above the code to
which it applies and is indented to the same level as the code. For example:

// increment all the odd values in the array
for (int i = 0; i < n; i++) {
 // add 1 only to the odd values
 if (array[i] % 2 == 1) {
 array[i] = array[i] + 1;
 }
}

Remember, good comments tell us things we don't already know, or can't easily decipher
among dense code blocks.

Indentation Styles
Choose one of the two styles and use it consistently (note how the braces are placed):

if (condition) { if (condition)
 ... {
} else if (condition) { ...
 ... }
} else { else if (condition)
 ... {
} ...
 }
 else
 {
 ...

 }

for (control expressions) { for (control expressions)
 ... {
} ...
 }

while (condition) { while (condition)
 ... {
} ...
 }

do { do
 ... {
} while (condition); ...
 } while (condition);

switch (variable) { switch (variable)
 case constant1: ... {
 break; case constant1: ...
 case constant2: ... break;
 break; case constant2: ...
 case default: ... break;
} case default: ...
 }

