
CS206 Lec23

CS206

Search Trees, AVL Trees

1

CS206

Binary Search Trees
• For all nodes

• The left node
is less than
parent

• The right node
is greater than
parent

2

CS206 Lec23

Binary Search Trees
• Performance is directly

affected by the height of tree
• All operations are
• worst case
• best case
• Expected if tree is

“balanced”
• balance — generally same

number of nodes in left
and right subtrees

𝑂(h)
h = 𝑂(𝑛)
h = 𝑂(𝑙𝑜𝑔𝑛)

𝑂(𝑙𝑜𝑔𝑛)

3

CS206 Lec23

Balanced Search Trees

• A variety of algorithms that augment a
standard BST with occasional operations to
reshape, reduce height and maintain balance.

• General approach == Rotation: move a child
to be above its parent, then relink subtrees to
maintain BST order
▫ 𝑂(1)

4

y x

y

T1

T2 T3T1 T2

T3

x

CS206 Lec23

Tree Rotation

• Rotation can be to the right or left
• Rotate reduces/increases the depth of

nodes in subtrees and by 1

• Rotation maintains BST order
• One or more rotations can be combined

to provide broader rebalancing

𝑇1 𝑇3

5

CS206 Lec23

AVL Tree

• Adelson-Velski and Landis (1962)
• Height-balance property
▫ For every internal node, the heights of the two

children differ by at most 1

• Any binary tree satisfying the height-balance
property is an AVL tree

• A height-balanced tree has height O(lg n)
• max height is provably 1.44*lg(n)

• see book pg 481 for proof (kind of)

6

CS206 Lec23

AVL Tree Example

7

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

CS206 Lec23

Insertion
• Maintain with each node the height of its

subtree.
• On insertion, first recur down through tree to

insert.
• Then as you unwind recursion, update the

height of each node.
• If height changes, check the height of other

child
• if not in balance then fix

8

CS206

Insertion code to maintain height
(the only code today!!!)

9

// assumes public insert from linked binary tree
private int iInsert(Node treepart, E toBeAdded) {
 int cmp =
treepart.element.compareTo(toBeAdded);
 if (cmp==0)
 return -11111; // the item is in the tree
 int dpth=1;
 if (cmp<0) {
 if (treepart.left==null)
 treepart.left=new Node(toBeAdded);
 else
 dpth = 1 + iInsert(treepart.left,
toBeAdded);
 }
 else { // cmp>0
 if (treepart.right==null)
 treepart.right=new Node(toBeAdded);
 else
 dpth= 1 + iInsert(treepart.right,
toBeAdded);
 }
 treepart.height=treepart.height>dpth?
treepart.height:dpth;
 return treepart.height;
 }

private class Node {
 Comparable<E> element;
 int height;
 Node right;
 Node left;

 public Node(Comparable<E> e)
{
 height = 0;
 element=e;
 right=null;
 left=null;
 }
}

CS206 Lec23

Fixing height imbalances
Rotation!!

• Two types of rotation
• Single

• left subtree of left node causes imbalance
• right subtree of right node causes

imbalance
• Double

• right subtree of left node causes imbalance
• left subtree of right node causes imbalance

10

CS206 Lec23

AVL Animation

11

CS206 Lec23

Deletion

12

• Deletion removes a
node with 0 or 1 child
• recall deletion

from binary tree
for node with 2
children.

• Deletion may reduce
the height of parent

• Rotate to rebalance
just like insertion

T1

T2 T4

1

2
32 x50

1

17

54
1
48

z44

62
2

88
1

T3

3

4

y

78

T1 T4

T2

4
62

x44

y
3

T3

78
2 0
50

48 54

17
1

1 1

z
2

1
88

CS206 Lec23

Rotations𝑂(𝑙𝑜𝑔𝑛)

• Unlike insertion where rotation of the
nearest unbalanced ancestor restores
the balance globally

• On deletion, rotation of the nearest
unbalanced ancestor only guarantees
balance locally to the subtree

• Worst-case requires rotations up
the tree to restore balance globally

𝑂(𝑙𝑜𝑔𝑛)

13

