## CS206

## Hash Tables

## Hash Functions and Maps

- A hash function $h$ maps a key to integers in a fixed interval [ $0, N-1$ ]
- $h(x)=x \% N$ is such a function for integers
- $h(x)$ is the hash value of key $x$
- A hash table is an array of size $N$
- associated hash function $h$
- item $(k, v)$ is stored at index $h(k)$


## Example

- A hash table storing entries as (SSN, Name), where SSN is a nine-digit positive integer
- Use an array of size $N=10000$ and the hash function
$h(x)=$ last 4 digits of

$x$


## Hash Function

- A hash function is usually specified as the composition of two functions:
व hash code: $h_{1}$ : key $\rightarrow$ integers
- compression: $h_{2}$ : integers $\rightarrow \quad[0, N-1]$
- $h(x)=h_{2}\left(h_{1}(x)\right)$
- The goal is to "disperse" the keys in an appropriately random way


## Hash Codes ( $h_{1}$ )

- Memory address:
- use the memory address where the keys are stored
- default hash code for Java objects
- Integer cast: interpret the bits storing the keys as integer - byte, short, int and float
- Component sum: partition bits into int components and sum them - long and double


## Hash Codes $\left(h_{1}\right)$

- Polynomial accumulation: partition bits of key into a sequence of components of fixed length $a_{0} a_{1} \ldots a_{n-1}$
- Evaluate the polynomial

$$
p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n-1} z^{n-1}
$$

- Strings: the choice of $z=33$ leads to at most 6 collisions on a set of 50,000 English words


## Compression $\left(h_{2}\right)$

- Division: $h_{2}(x)=x \% N$
- $N$ is usually chosen to be a prime
- MAD: $h_{2}(x)=(a x+b) \% N, a \% N \neq 0$
- multiply: a*x
- add: +b
- divide: \%N
- $a$ and $b$ are nonnegative integers
- $a$ scales the range and $b$ shifts the start


## Collision

- A hash function does not guarantee one-to-one mapping - no hash function does
- When more than one key hashes to the same index, we have a "collision"
- Handling collisions
- Separate Chaining
- Open Addressing
- Linear Probing
- Quadratic probing
- Double Hashing


## Separate chaining

- LoadFactor $==>$ $\alpha=n / N$
- $\mathrm{n}=$ itemcount
- N=tablesize
- Given good hash and $\alpha<1$ then put/ get run constant time
- Bad hash / high $\alpha$ issues



## Open Addressing and Probing

- Colliding item is put in a - Example: $h(x)=x \% 13$ different cell (referred to as open addressing)
- Linear probing: place the colliding item in the next (circularly) available table cell
- insert 18, 41, 22, 44, 59, 32, 31, 73

- Colliding items cluster together - future collisions to cause a longer sequence of probes


## Probing Distance

- Given a hash value $h(x)$, linear probing generates $h(x), h(x)+1, h(x)+2, \ldots$
- Primary clustering - the bigger the cluster gets, the faster it grows
- Quadratic probing $h(x), h(x)+1, h(x)+4, h(x)+9, \ldots$
- Quadratic probing leads to secondary clustering, more subtle, not as dramatic, but still systematic


## Double Hashing

- Interval between probes is fixed but computed by a second hash function
- Use a secondary hash function $d(k)$ to handle collisions by placing an item in the first available cell of the series
$i+j d(k) \% N, 0 \leq j \leq N-1$
- $d(k) \neq 0$
- $N$ must be prime
- $d(k)=q-k \% q, q<N, q$ is prime


## Example

- Double hashing:
- $N=13$
- $h(k)=k \% 13$
- $d(k)=7-k \% 7$
- Insert 18, 41, 22, 44,

| k | $h(k)$ | $d(k)$ | Probes |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 5 | 3 | 5 |  |  |
| 41 | 2 | 1 | 2 |  |  |
| 22 | 9 | 6 | 9 |  |  |
| 44 | 5 | 5 | 5 | 10 |  |
| 59 | 7 | 4 | 7 |  |  |
| 32 | 6 | 3 | 6 |  |  |
| 31 | 5 | 4 | 5 | 9 | 0 |
| 73 | 8 | 4 | 8 |  |  | 59, 32, 31, 73



## Performance Analysis

- In the worst case, searches, insertions and removals take $O(n)$ time
- when all the keys collide
- The load factor $\alpha$ affects the performance of a hash table
- expected number of probes for an insertion with open addressing is $\frac{1}{1-\alpha}$
- Expected time of all operations is $O(1)$ provided $\alpha$ is not close to 1


## Open Addressing vs Chaining

- Probing is significantly faster in practice
- locality of references - much faster to access a series of elements in an array than to follow the same number of pointers in a linked list
- Efficient probing requires soft/lazy deletions - tombstoning, why?
- May require "graveyard defragmenting"


## Probing Tradeoffs

- Linear probing - best cache performance but most sensitive to clustering
- Double hashing poor cache performance but exhibits virtually no clustering
- Quadratic inbetween
- As load factor approaches 100\%, number of probes rises dramatically
- Even with good hash functions, keep load factor $80 \%$ or below (50\% is typical)
- Other open addressing methods besides probing


## Good Hash Function

- is critical to performance
- A poor hash function can lead to poor performance even at very low load factor
- It is easy to unintentionally write a hash function that leads to severe clustering
- Testing your hash function is paramount


## Performance of Hashtable

|  | Hash Expected | Hash Worst |
| :--- | :--- | :--- |
| search |  |  |
| insert |  |  |
| remove |  |  |
| $\min / \max$ |  |  |


|  | Unsorted <br> array | Sorted <br> array | Unsorted <br> list | Sorted <br> list | BST <br> balanced | Hash <br> Expected |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| search |  |  |  |  |  |  |
| insert |  |  |  |  |  |  |
| remove |  |  |  |  |  |  |
| min/max |  |  |  |  |  | Lec15 |
| CS206 |  |  |  |  | L8 |  |

## Hashtable vs Array

- A hashtable is an unsorted array with a fast search - $O$ (1) expected
- An array is more memory efficient, but slower for searching
- If your data has natural indexing - a way to assign an ID/unique integer to each entry, then you are better off using an array. You have a hash function with 1-to-1 mapping and guaranteed no collisions


## Hashtable Size

- Should be a prime
- twice the size of max number of keys
- or 1.3 times if $n$ is very large
- $1 / 1.333=75 \%$ load factor
- Keep track of load factor and expand (rehash) the hash table when necessary


## Midterm 2 review

Show all the steps for a merge sort when sorting the following list of integers

1719, 166, 569, 346, 1993, 1522, 726, 585, 1747, 956, 1512, 1909, 917, 1476, 1755

Show every recursive step for a poll operation on an array based max heap that contains the following data. (Shown in order within the array. That is 14 is in position 0,13 in position 1 , etc)
$14,13,11,9,12,5,10,4,3,7,8,0,2,6,1$
Alternately phrased, show the contents of the array every time the array changes.

Give the preorder traversals for this tree Give the postorder traversals for this tree Give a breadth-first traversal of this tree.


Write a recursive method that takes an array of integers and rearranges them so that all odd integers appear before all even integers

