
CS206 Lec19

CS206

Hash Tables

1

CS206 Lec19

Hash Functions and Maps

• A hash function maps a key to integers
in a fixed interval

• is such a function for
integers

• is the hash value of key
• A hash table is an array of size
▫ associated hash function
▫ item is stored at index

h
[0,𝑁 − 1]

h(𝑥) = 𝑥%𝑁

h(𝑥) 𝑥
𝑁

h
(𝑘, 𝑣) h(𝑘)

2

CS206 Lec19

Example

• A hash table storing
entries as (SSN,
Name), where SSN is
a nine-digit positive
integer

• Use an array of size
 and the

hash function 
 last 4 digits of

𝑁 = 10000

h(𝑥) =
𝑥

3

∅

∅

∅

∅

0
1
2
3
4

9997
9998
9999

…
451-229-0004

981-101-0002

200-751-9998

025-612-0001

CS206 Lec19

Hash Function

• A hash function is usually specified as
the composition of two functions:
▫ hash code: key ! integers
▫ compression: integers !
▫

• The goal is to “disperse” the keys in an
appropriately random way

h1:
h2: [0, 𝑁 − 1]

h(𝑥) = h2(h1(𝑥))

4

CS206 Lec19

Hash Codes ()h1

• Memory address:
▫ use the memory address where the keys are

stored
▫ default hash code for Java objects

• Integer cast: interpret the bits storing the
keys as integer – byte, short, int and
float

• Component sum: partition bits into int
components and sum them – long and
double

5

CS206 Lec19

Hash Codes ()h1

• Polynomial accumulation: partition bits
of key into a sequence of components of
fixed length

• Evaluate the polynomial 

• Strings: the choice of leads to at
most 6 collisions on a set of 50,000
English words

𝑎0𝑎1…𝑎𝑛−1

𝑝(𝑧) = 𝑎0 + 𝑎1𝑧 + 𝑎2𝑧2 + … + 𝑎𝑛−1𝑧𝑛−1

𝑧 = 33

6

CS206 Lec19

Compression ()h2

• Division:
• is usually chosen to be a prime

• MAD:
• multiply: a*x
• add: +b
• divide: %N

• and are nonnegative integers
• scales the range and shifts the start

h2(𝑥) = 𝑥%𝑁
𝑁

h2(𝑥) = (𝑎𝑥 + 𝑏)%𝑁, 𝑎%𝑁 ≠ 0

𝑎 𝑏
𝑎 𝑏

7

CS206 Lec19

Collision
• A hash function does not guarantee one-to-one

mapping – no hash function does
• When more than one key hashes to the same

index, we have a “collision”
• Handling collisions

• Separate Chaining
• Open Addressing

• Linear Probing
• Quadratic probing
• Double Hashing

8

CS206 Lec19

Separate chaining

• LoadFactor ==>

• n=itemcount
• N=tablesize

• Given good hash
and <1 then put/
get run constant
time

• Bad hash / high
issues

α = 𝑛/𝑁

𝛼

𝛼

9

CS206 Lec19

Open Addressing and Probing
• Colliding item is put in a

different cell (referred to
as open addressing)

• Linear probing: place the
colliding item in the next
(circularly) available
table cell

• Colliding items cluster
together – future
collisions to cause a
longer sequence of
probes

• Example:
• insert 18, 41, 22, 44,

59, 32, 31, 73

h(𝑥) = 𝑥%13

10

0 1 2 3 4 5 6 7 8 9 10 11 12

 41 18 44 59 32 22 31 73
0 1 2 3 4 5 6 7 8 9 10 11 12

CS206 Lec19

Probing Distance

• Given a hash value , linear probing
generates

• Primary clustering – the bigger the
cluster gets, the faster it grows

• Quadratic probing –

• Quadratic probing leads to secondary
clustering, more subtle, not as dramatic,
but still systematic

h(𝑥)
h(𝑥), h(𝑥) + 1, h(𝑥) + 2, …

h(𝑥), h(𝑥) + 1, h(𝑥) + 4, h(𝑥) + 9, …

11

CS206 Lec19

Double Hashing

• Interval between probes is fixed but computed
by a second hash function

• Use a secondary hash function to handle
collisions by placing an item in the first
available cell of the series  

•
• must be prime
• is prime  

𝑑(𝑘)

𝑖 + 𝑗𝑑(𝑘)%𝑁, 0 ≤ 𝑗 ≤ 𝑁 − 1
𝑑(𝑘) ≠ 0
𝑁
𝑑(𝑘) = 𝑞 − 𝑘%𝑞, 𝑞 < 𝑁, 𝑞

12

CS206 Lec19

Example

• Double hashing:
▫
▫
▫

• Insert 18, 41, 22, 44,
59, 32, 31, 73

𝑁 = 13
h(𝑘) = 𝑘%13
𝑑(𝑘) = 7 − 𝑘%7

13

k h (k) d (k) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8

0 1 2 3 4 5 6 7 8 9 10 11 12

31 41 18 32 59 73 22 44
0 1 2 3 4 5 6 7 8 9 10 11 12

CS206 Lec19

Performance Analysis
• In the worst case, searches, insertions and

removals take time
▫ when all the keys collide

• The load factor affects the performance
of a hash table
▫ expected number of probes for an insertion

with open addressing is

• Expected time of all operations is
provided is not close to 1

𝑂(𝑛)

𝛼

1
1 − 𝛼

𝑂(1)
𝛼

14

CS206 Lec19

Open Addressing vs Chaining

• Probing is significantly faster in practice
• locality of references – much faster to

access a series of elements in an array
than to follow the same number of
pointers in a linked list

• Efficient probing requires soft/lazy
deletions – tombstoning, why?

• May require “graveyard defragmenting”

15

CS206 Lec19

Probing Tradeoffs

• Linear probing – best
cache performance
but most sensitive to
clustering

• Double hashing –
poor cache
performance but
exhibits virtually no
clustering

• Quadratic –
inbetween

• As load factor
approaches 100%,
number of probes
rises dramatically

• Even with good hash
functions, keep load
factor 80% or below
(50% is typical)

• Other open
addressing methods
besides probing

16

CS206 Lec19

Good Hash Function

• is critical to performance
• A poor hash function can lead to poor

performance even at very low load
factor

• It is easy to unintentionally write a hash
function that leads to severe clustering

• Testing your hash function is paramount

17

CS206 Lec15

Performance of Hashtable

18

Hash Expected Hash Worst

search
insert
remove

min/max

Unsorted
array

Sorted  
 array

Unsorted  
list

Sorted  
list

BST
balanced

Hash
Expected

search
insert
remove
min/max

CS206 Lec19

Hashtable vs Array

• A hashtable is an unsorted array with a
fast search – expected

• An array is more memory efficient, but
slower for searching

• If your data has natural indexing – a way
to assign an ID/unique integer to each
entry, then you are better off using an
array. You have a hash function with 1-
to-1 mapping and guaranteed no collisions

𝑂(1)

19

CS206 Lec19

Hashtable Size

• Should be a prime
• twice the size of max number of keys
• or 1.3 times if is very large
• 1/1.333 = 75% load factor
• Keep track of load factor and expand

(rehash) the hash table when necessary

𝑛

20

CS206

Midterm 2 review

21

CS206 22

Show all the steps for a merge sort when sorting the
following list of integers

1719, 166, 569, 346, 1993, 1522, 726, 585, 1747, 956,
1512, 1909, 917, 1476, 1755

CS206 23

Show every recursive step for a poll operation on an
array based max heap that contains the following
data. (Shown in order within the array. That is 14 is
in position 0, 13 in position 1, etc)

14, 13, 11, 9, 12, 5, 10, 4, 3, 7, 8, 0, 2, 6, 1

Alternately phrased, show the contents of the array
every time the array changes.

CS206 24

Give the preorder traversals for this tree
Give the postorder traversals for this tree
Give a breadth-first traversal of this tree.

CS206 25

Write a recursive method that takes an array of integers and
rearranges them so that all odd integers appear before all even
integers

