CS206

Array-based Heaps

Upheap

- Restore heap order
 - swap upwards
 - stop when finding a smaller parent
 or reach root
- O(logn)

Downheap

- Restore heap order
 - swap downwards
 - swap with smaller child
 - stop when finding larger children
 - or reach a leaf
- O(logn)

General Removal

- swap with last node
- delete last node
- may need to upheap or downheap

Array-based Heap

- Heap is a complete binary tree, thus is particularly suited for array-based implementation
- Array/ArrayList of length n for heap with n keys
- node at index *i*
 - left child 2i + 1
 - right child 2i + 2

- peek element at 0
- poll remove 0
- no links/references stored $\begin{array}{c}
 2 \\
 9 \\
 \hline
 2 \\
 5 \\
 \hline
 6 \\
 \hline
 9 \\
 \hline
 7 \\
 \hline
 2 \\
 0 \\
 1 \\
 2 \\
 3 \\
 4 \\
 \end{array}$

Array-based Binary Tree

 The numbering can then be used as indices for storing the nodes directly in an array

3

Heap-based PriorityQueue

public class ArrayHeap<E extends Comparable<E>> extends ArrayBinaryTree<E> implements PriorityQueue<E>{

```
E peek();
E poll();
}
```

Update Key

- What should happen when you change the key of an existing element in a heap?
- What are the cases?
 - o increaseKey

□ decreaseKey

Merging Two Heaps

- Given two heaps and a new key k
- Create a new heap with k as root and the two heaps as subtrees
- downheap on *k* to restore heap order
- *O*(*logn*)

Bottom-up Construction

- Complexity of constructing a heap with *n* elements?
 - Call insert n times O(nlogn)
 - □ When does *O*(*nlogn*) occur?
- More efficient alternative
 - 1. construct (n + 1)/2 elementary heaps storing one entry each
 - 2. merge pairwise into (n + 1)/4 larger heaps

Analysis

- n/4 + n/8 + ... + 1 = O(n) merges
 - but O() ignores constants
 - O(n) yes, but really n/2 merges
- Each merge is *O*(*logn*) which would suggest O(nlogn)
 - but first merge cost is 1 comparison
 - figuring the max number of comparisons for each merge
- $n/4*1 + n/8*2 + n/16*3 \dots + 1*\log n = O(n)$