CS206

Array-based Heaps

Upheap

- Restore heap order
- swap upwards
- stop when finding a smaller parent
- or reach root

- $O(\log n)$

Downheap

- Restore heap order
- swap downwards
- swap with smaller child

- stop when finding larger children
- or reach a leaf
- $O(\log n)$

General Removal

- swap with last node
- delete last node
- may need to upheap or downheap

Array-based Heap

- Heap is a complete binary tree, thus is particularly suited for array-based implementation
- Array/ArrayList of length n for heap with n keys
- node at index i
- left child $2 i+1$
- right child $2 i+2$
- peek - element at 0
- poll - remove 0
- no links/references stored

Array-based Binary Tree

- The numbering can then be used as indices for storing the nodes directly in an array

$/$	$*$	+	+	4	-	2	3	1			9	5		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
CS206														

Heap-based PriorityQueue

public class ArrayHeap<E extends Comparable<E>> extends ArrayBinaryTree<E> implements PriorityQueue<E>\{

E peek();
E poll();
\}

Update Key

- What should happen when you change the key of an existing element in a heap?
- What are the cases?
- increaseKey
- decreaseKey

Merging Two Heaps

- Given two heaps and a new key k

- Create a new heap with k as root and the two heaps as subtrees
- downheap on k to restore heap order
- $O(\log n)$

Bottom-up Construction

- Complexity of constructing a heap with n elements?
- Call insert n times - O (nlogn)
- When does $O(n \operatorname{logn})$ occur?
- More efficient alternative

1. construct $(n+1) / 2$ elementary heaps storing one entry each
2. merge pairwise into $(n+1) / 4$ larger heaps

heapify

heapify

Analysis

- $n / 4+n / 8+\ldots+1=O(n)$ merges
- but O() ignores constants
- O(n) yes, but really $n / 2$ merges
- Each merge is $O(\log n)$ which would suggest O(nlogn)
- but first merge cost is 1 comparison
- figuring the max number of comparisons for each merge
- $n / 4^{*} 1+n / 8^{*} 2+n / 16 * 3 \ldots+1 * \operatorname{logn}=O(n)$

