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Upheap

• Restore heap order  
▫ swap upwards 
▫ stop when finding a  

smaller parent 
▫ or reach root 

• 𝑂(𝑙𝑜𝑔𝑛)
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Downheap

• Restore heap order  
▫ swap downwards 
▫ swap with smaller child 
▫ stop when finding  

larger children  
▫ or reach a leaf 

• 𝑂(𝑙𝑜𝑔𝑛)
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General Removal

• swap with last node 
• delete last node 
• may need to upheap or downheap
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Array-based Heap 

• Heap is a complete 
binary tree, thus is 
particularly suited for 
array-based 
implementation 

• Array/ArrayList of 
length  for heap with 
 keys 

• node at index  
▫ left child  
▫ right child 

𝑛
𝑛

𝑖
2𝑖 + 1

2𝑖 + 2

• peek – element at  
• poll – remove  
• no links/references 

stored
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Array-based Binary Tree

• The numbering can 
then be used as 
indices for storing 
the nodes directly in 
an array
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Heap-based PriorityQueue
public class ArrayHeap<E extends 
Comparable<E>> extends 
ArrayBinaryTree<E> implements 
PriorityQueue<E>{ 

  E peek();  
  E poll();  
}

7
Write poll at chalkboard



CS206 Lec17

Update Key

• What should happen when you change 
the key of an existing element in a 
heap? 

• What are the cases? 
▫ increaseKey 
▫ decreaseKey
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Merging Two Heaps

• Given two heaps and 
a new key  

• Create a new heap 
with  as root and 
the two heaps as 
subtrees 

• downheap on  to 
restore heap order 

•

𝑘

𝑘

𝑘

𝑂(𝑙𝑜𝑔𝑛)

9

3

58

2

64

7

3

58

2

64

2

3

58

4

67



CS206 Lec17

Bottom-up Construction

• Complexity of constructing a heap with  
elements? 
▫ Call insert  times -  
▫ When does  occur? 

• More efficient alternative 
1. construct elementary heaps 

storing one entry each 
2. merge pairwise into  larger heaps

𝑛

𝑛 𝑂(𝑛𝑙𝑜𝑔𝑛)
𝑂(𝑛𝑙𝑜𝑔𝑛)

(𝑛 + 1)/2 

(𝑛 + 1)/4
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heapify
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heapify
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Analysis

•  merges 
• but O() ignores constants 
• O(n) yes, but really n/2 merges 

• Each merge is  which would suggest 
O(nlogn) 
• but first merge cost is 1 comparison 
• figuring the max number of comparisons 

for each merge 
• n/4*1 + n/8*2 +n/16*3 … + 1*logn = O(n)

𝑛/4  +  𝑛/8  +  …  +  1  =  𝑂(𝑛)

𝑂(𝑙𝑜𝑔𝑛)

13


