
CS206 Lec17

CS206

Array-based Heaps

1

CS206 Lec16

Upheap

• Restore heap order
▫ swap upwards
▫ stop when finding a  

smaller parent
▫ or reach root

• 𝑂(𝑙𝑜𝑔𝑛)

2

2

65

79 1
z

2

15

79 6
z

1

25

79 6
z

CS206 Lec16

Downheap

• Restore heap order
▫ swap downwards
▫ swap with smaller child
▫ stop when finding  

larger children
▫ or reach a leaf

• 𝑂(𝑙𝑜𝑔𝑛)

3

7

65

9
w

5

67

9
w

CS206 Lec16

General Removal

• swap with last node
• delete last node
• may need to upheap or downheap

4

CS206 Lec17

Array-based Heap

• Heap is a complete
binary tree, thus is
particularly suited for
array-based
implementation

• Array/ArrayList of
length for heap with
 keys

• node at index
▫ left child
▫ right child

𝑛
𝑛

𝑖
2𝑖 + 1

2𝑖 + 2

• peek – element at
• poll – remove
• no links/references

stored

0
0

5

2

65

79

2 5 6 9 7
0 1 2 3 4

CS206 Lec15

Array-based Binary Tree

• The numbering can
then be used as
indices for storing
the nodes directly in
an array

6

CS206 Lec17

Heap-based PriorityQueue
public class ArrayHeap<E extends
Comparable<E>> extends
ArrayBinaryTree<E> implements
PriorityQueue<E>{

 E peek();  
 E poll();  
}

7
Write poll at chalkboard

CS206 Lec17

Update Key

• What should happen when you change
the key of an existing element in a
heap?

• What are the cases?
▫ increaseKey
▫ decreaseKey

8

CS206 Lec17

Merging Two Heaps

• Given two heaps and
a new key

• Create a new heap
with as root and
the two heaps as
subtrees

• downheap on to
restore heap order

•

𝑘

𝑘

𝑘

𝑂(𝑙𝑜𝑔𝑛)

9

3

58

2

64

7

3

58

2

64

2

3

58

4

67

CS206 Lec17

Bottom-up Construction

• Complexity of constructing a heap with
elements?
▫ Call insert times -
▫ When does occur?

• More efficient alternative
1. construct elementary heaps

storing one entry each
2. merge pairwise into larger heaps

𝑛

𝑛 𝑂(𝑛𝑙𝑜𝑔𝑛)
𝑂(𝑛𝑙𝑜𝑔𝑛)

(𝑛 + 1)/2

(𝑛 + 1)/4

10

CS206 Lec17

heapify

11

415 12 6 7 23 2016

416 15

9

12 6 7

11

23

17

20

25

2016 25 9

4

12 11 7

6

23

1715

CS206 Lec17

heapify

12

25 12 11 23 20

1715

16

8

4

9

5

6

7 25 12 11 23 20

1715

16 8

5

9

4 6

7

25 12 11 8 23 20

17715

6

16

5

14

4

9 25 12 11 8 23 20

17715

6

16 14

4

5

9

CS206 Lec17

Analysis

• merges
• but O() ignores constants
• O(n) yes, but really n/2 merges

• Each merge is which would suggest
O(nlogn)
• but first merge cost is 1 comparison
• figuring the max number of comparisons

for each merge
• n/4*1 + n/8*2 +n/16*3 … + 1*logn = O(n)

𝑛/4 + 𝑛/8 + … + 1 = 𝑂(𝑛)

𝑂(𝑙𝑜𝑔𝑛)

13

