
CS206 Lec16

CS206

Priority Queues

1

CS206 Lec14

Performance of Trees

2

Complete
Tree

Worst
Tree

search
insert
remove

Create a dataset to make the worst possible tree

CS206 Lec16

Priority Queue
• A queue that maintains order of elements according to

some priority
• Removal order, not general order

• the rest may or may not be sorted
• Types of PQs

• min PQ — the element with smallest key is removed
first

• max PQ — the largest is removed first
• Consider a PQ in which priority is based on insertion time

• min PQ == ??
• max PQ== ??

3

CS206 Lec16

Key
• Priority queues are ordered by some key, which may be:

• derived from the data element
• one field
• combination of fields

• independent of data element
• for example: insertion time

• best practice is to define relation between keys using
compareTo

• Changing compareTo allows changing the priority
queue ordering while changing nothing else

4

CS206 Lec16

Key-Value Pair
• Typically think of PQ as containing a pair

• (Key, Value)
• Key defines priority
• Value is data the objects store

• KV pairs are frequently used
• Ideally keys are unique

• how to handle duplicate keys?
• Ideally keys have a natural ordering.

• Using compareTo allows arbitrary comparisons
• Values need not be numerical or unique

5

CS206 Lec16

Example - minPQ

6

CS206 Lec16

Interface
public interface PriorityQueueInterface<E
extends Comparable<E>> extends
BinaryTreeInterface<E> {  
 E getRootElement();  
 int size();  
 boolean isEmpty();  
 boolean contains(E element);  
 void insert(E element);  
 boolean remove(E element);  
 E peek(); // look at min/max; do not remove 
 E poll(); // removeMin/removeMax;  
}

7
Note that extending BinaryTreeInterface does not require that PQ is built on a Binary Tree

CS206 Lec16

How do we implement it?

• Efficiency depends on implementation

• Reove

• Remove may apply to any element, poll
just to the “first”

8

Unsorted
array

Unsorted  
 list

Sorted  
array

Sorted  
list

peek
poll
insert
remove

CS206 Lec16

Priority Queue Sort

• Sorting using a priority queue
1.Insert with a series of insert operations

2.Remove in sorted order with a series of poll
operations

• Efficiency depends on implementation and
runtime of insert and poll

9

CS206 Lec16

Selection Sort

• Selection-sort:
▫ select the min/max and swap with 0

• priority queue is implemented with an
unsorted sequence

• 𝑂(𝑛2)

10

CS206 Lec16

Example

11

 Sequence S Priority Queue P
Input: (7,4,8,2,5,3,9) ()
Phase 1
 (a) (4,8,2,5,3,9) (7)
 (b) (8,2,5,3,9) (7,4)

 (g) () (7,4,8,2,5,3,9)
Phase 2
 (a) (2) (7,4,8,5,3,9)
 (b) (2,3) (7,4,8,5,9)
 (c) (2,3,4) (7,8,5,9)
 (d) (2,3,4,5) (7,8,9)
 (e) (2,3,4,5,7) (8,9)
 (f) (2,3,4,5,7,8) (9)
 (g) (2,3,4,5,7,8,9) ()

CS206 Lec16

Insertion Sort

• Insertion-sort:
▫ insert/swap the element into the correct

sorted position

• Priority queue is implemented with a
sorted sequence

• 𝑂(𝑛2)

12

CS206 Lec16

Example

13

 Sequence S Priority queue P
Input: (7,4,8,2,5,3,9) ()
Phase 1
 (a) (4,8,2,5,3,9) (7)
 (b) (8,2,5,3,9) (4,7)
 (c) (2,5,3,9) (4,7,8)
 (d) (5,3,9) (2,4,7,8)
 (e) (3,9) (2,4,5,7,8)
 (f) (9) (2,3,4,5,7,8)
 (g) () (2,3,4,5,7,8,9)
Phase 2
 (a) (2) (3,4,5,7,8,9)
 (b) (2,3) (4,5,7,8,9)

 (g) (2,3,4,5,7,8,9) ()

CS206 Lec16

Binary Heap

• A heap is a binary tree storing keys at its
nodes and satisfying:
▫ heap-order: for every internal node other

than root,
▫ complete binary tree: let be the height of

the heap
⬥there are nodes of depth ,
⬥at depth , the leaf nodes are in the leftmost

positions
⬥last node of a heap is the rightmost node of max

depth

𝑣
𝑘𝑒𝑦(𝑣) ≥ 𝑘𝑒𝑦(𝑝𝑎𝑟𝑒𝑛𝑡(𝑣))

h

2𝑖 𝑖 0 ≤ 𝑖 ≤ h − 1
h

14

2

65

79

last node

CS206 Lec16

Height of a Heap

• A heap storing n keys has a height of
O(logn)

15

1

2

2h−1

1

keys
0

1

h−1

h

depth

CS206 Lec16

Insertion into a Heap

• Insert as new last node
• Need to restore heap order

16

2

65

79

insertion node

z

2

65

79 1z

CS206 Lec16

Upheap

• Restore heap order
▫ swap upwards
▫ stop when finding a  

smaller parent
▫ or reach root

• 𝑂(𝑙𝑜𝑔𝑛)

17

2

65

79 1
z

2

15

79 6
z

1

25

79 6
z

CS206 Lec16

Poll

• Removing the root of the heap
▫ Replace root with last node
▫ Remove last node
▫ Restore heap order

𝑤

18

2

65

79

last node

w

7

65

9
w

new last node

CS206 Lec16

Downheap

• Restore heap order
▫ swap downwards
▫ swap with smaller child
▫ stop when finding  

larger children
▫ or reach a leaf

• 𝑂(𝑙𝑜𝑔𝑛)

19

7

65

9
w

5

67

9
w

CS206 Lec16

Heap Sort

• A PQ-sort implemented with a heap
• Space
• insert/poll (each)
• total time

𝑂(𝑛)
𝑂(𝑙𝑜𝑔𝑛)

𝑂(𝑛𝑙𝑜𝑔𝑛)

20

CS206 Lec16

General Removal

• swap with last node
• delete last node
• may need to upheap or downheap

21

